Komal, Prabhjot Kaur, Nidhi Arora, Jyotiram A Sawale, Amandeep Singh
{"title":"Transformative CRISPR-Cas9 Technologies: A Review of Molecular Mechanisms, Precision Editing Techniques, and Clinical Progress in Sickle Cell Disease.","authors":"Komal, Prabhjot Kaur, Nidhi Arora, Jyotiram A Sawale, Amandeep Singh","doi":"10.2174/0113892002356293250225094826","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a hereditary blood disorder resulting from the production of distorted hemoglobin molecules that cause red blood cells to adopt a sickle or crescent-like shape. This disease affects millions of people, particularly those of African, Mediterranean, Middle Eastern, or South Asian descent. In recent years, however, advancements in the CRISPR-Cas9 gene-editing systems have surged. CRISPR stands for clustered regularly interspaced short palindromic repeats, referring to a specific organization of short, partially repeated DNA sequences in prokaryotic genomes. The CRISPR-Cas9 technique is based on the type II CRISPR system of bacteria and involves the Cas9 nuclease, which is targeted to a particular genome section with the help of single-guide RNA. Initially used for random mutations and small sequence alterations, genome editing methods have advanced to achieve large-scale DNA segment manipulation. The BE and PE-- type CRISPR-Cas9 genome editing variants provide new therapeutic options for genetic disorders, improving patients' prognosis. Curative gene editing using CRISPR-Cas9 technology to correct HBB gene mutations that cause SCD represents a revolutionary therapeutic development. These advances bring new hope to patients with previously untreatable diseases, potentially offering a future where genetic disorders can be addressed at their roots. A major objective of CRISPR technology is to enhance its precision and speed, both critical for effective gene editing. This review focuses on molecular mechanisms of CRISPR-Cas9 technology, CRISPR-- Cas9-based approaches for HBB gene modification, clinical trials, patients with sickle cell disease, and advances in CRISPR technology for sickle cell disease.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002356293250225094826","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sickle cell disease (SCD) is a hereditary blood disorder resulting from the production of distorted hemoglobin molecules that cause red blood cells to adopt a sickle or crescent-like shape. This disease affects millions of people, particularly those of African, Mediterranean, Middle Eastern, or South Asian descent. In recent years, however, advancements in the CRISPR-Cas9 gene-editing systems have surged. CRISPR stands for clustered regularly interspaced short palindromic repeats, referring to a specific organization of short, partially repeated DNA sequences in prokaryotic genomes. The CRISPR-Cas9 technique is based on the type II CRISPR system of bacteria and involves the Cas9 nuclease, which is targeted to a particular genome section with the help of single-guide RNA. Initially used for random mutations and small sequence alterations, genome editing methods have advanced to achieve large-scale DNA segment manipulation. The BE and PE-- type CRISPR-Cas9 genome editing variants provide new therapeutic options for genetic disorders, improving patients' prognosis. Curative gene editing using CRISPR-Cas9 technology to correct HBB gene mutations that cause SCD represents a revolutionary therapeutic development. These advances bring new hope to patients with previously untreatable diseases, potentially offering a future where genetic disorders can be addressed at their roots. A major objective of CRISPR technology is to enhance its precision and speed, both critical for effective gene editing. This review focuses on molecular mechanisms of CRISPR-Cas9 technology, CRISPR-- Cas9-based approaches for HBB gene modification, clinical trials, patients with sickle cell disease, and advances in CRISPR technology for sickle cell disease.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.