Development of artificial intelligence-based algorithms for the process of human identification through dental evidence.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL International Journal of Legal Medicine Pub Date : 2025-03-06 DOI:10.1007/s00414-025-03453-x
Cristiana Palmela Pereira, Raquel Carvalho, Diana Augusto, Tomás Almeida, Alexandre P Francisco, Francisco Salvado E Silva, Rui Santos
{"title":"Development of artificial intelligence-based algorithms for the process of human identification through dental evidence.","authors":"Cristiana Palmela Pereira, Raquel Carvalho, Diana Augusto, Tomás Almeida, Alexandre P Francisco, Francisco Salvado E Silva, Rui Santos","doi":"10.1007/s00414-025-03453-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Forensic Odontology plays a crucial role in medicolegal identification by comparing dental evidence in antemortem (AM) and postmortem (PM) dental records, including orthopantomograms (OPGs). Due to the complexity and time-consuming nature of this process, imaging analysis optimization is an urgent matter. Convolutional neural networks (CNN) are promising artificial intelligence (AI) structures in Forensic Odontology for their efficiency and detail in image analysis, making them a valuable tool in medicolegal identification. Therefore, this study focused on the development of a CNN algorithm capable of comparing AM and PM dental evidence in OPGs for the medicolegal identification of unknown cadavers.</p><p><strong>Materials and methods: </strong>The present study included a total sample of 1235 OPGs from 1050 patients from the Stomatology Department of Unidade Local de Saúde Santa Maria, aged 16 to 30 years. Two algorithms were developed, one for age classification and another for positive identification, based on the pre-trained model VGG16, and performance was evaluated through predictive metrics and heatmaps.</p><p><strong>Results: </strong>Both developed models achieved a final accuracy of 85%, reflecting high overall performance. The age classification model performed better at classifying OPGs from individuals aged between 16 and 23 years, while the positive identification model was significantly better at identifying pairs of OPGs from different individuals.</p><p><strong>Conclusions: </strong>The developed AI model is useful in the medicolegal identification of unknown cadavers, with advantage in mass disaster victim identification context, by comparing AM and PM dental evidence in OPGs of individuals aged 16 to 30 years.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03453-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Forensic Odontology plays a crucial role in medicolegal identification by comparing dental evidence in antemortem (AM) and postmortem (PM) dental records, including orthopantomograms (OPGs). Due to the complexity and time-consuming nature of this process, imaging analysis optimization is an urgent matter. Convolutional neural networks (CNN) are promising artificial intelligence (AI) structures in Forensic Odontology for their efficiency and detail in image analysis, making them a valuable tool in medicolegal identification. Therefore, this study focused on the development of a CNN algorithm capable of comparing AM and PM dental evidence in OPGs for the medicolegal identification of unknown cadavers.

Materials and methods: The present study included a total sample of 1235 OPGs from 1050 patients from the Stomatology Department of Unidade Local de Saúde Santa Maria, aged 16 to 30 years. Two algorithms were developed, one for age classification and another for positive identification, based on the pre-trained model VGG16, and performance was evaluated through predictive metrics and heatmaps.

Results: Both developed models achieved a final accuracy of 85%, reflecting high overall performance. The age classification model performed better at classifying OPGs from individuals aged between 16 and 23 years, while the positive identification model was significantly better at identifying pairs of OPGs from different individuals.

Conclusions: The developed AI model is useful in the medicolegal identification of unknown cadavers, with advantage in mass disaster victim identification context, by comparing AM and PM dental evidence in OPGs of individuals aged 16 to 30 years.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
期刊最新文献
Development of artificial intelligence-based algorithms for the process of human identification through dental evidence. Enhancing trace DNA recovery from disposable face masks: insights from the COVID-19 era and beyond. From traditional to innovative: implications of cranial non-metric traits in personal identification. Improving forensic healthcare: ARMED, a new telemedical examination. Correction to: Analysis of the sequencing quality of next-generation sequencing for the entire mitochondrial genome in decomposed human samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1