miR-141-3p-loaded extracellular vesicles ameliorate intrahepatic bile duct stone disease by decreasing MUC5AC expression via the MAPK pathway.

IF 1.1 Q2 MEDICINE, GENERAL & INTERNAL Intractable & rare diseases research Pub Date : 2025-02-28 DOI:10.5582/irdr.2024.01051
Yinbiao Cao, Shichun Lu, Haowen Tang
{"title":"miR-141-3p-loaded extracellular vesicles ameliorate intrahepatic bile duct stone disease by decreasing MUC5AC expression <i>via</i> the MAPK pathway.","authors":"Yinbiao Cao, Shichun Lu, Haowen Tang","doi":"10.5582/irdr.2024.01051","DOIUrl":null,"url":null,"abstract":"<p><p>Intrahepatic bile duct stone disease has a high morbidity in China, with a high rate of additional surgery, a high rate of cancer development, and a high disease burden. Activation of the MAPK pathway leading to up-regulation of MUC5AC expression is an important factor in the formation of intrahepatic bile duct stones. Exosomes or extracellular vesicles (EVs) can be used as therapeutic vectors to encapsulate and carry drugs into diseased cells to achieve a therapeutic effect. The current study alleviated intrahepatic bile duct stone disease by preparing EVs carrying miR-141-3p. First, the researchers loaded mesenchymal stem cell (ESC)-derived EVs with miR-141-3p (miR-141-3p-EVs) and verified the phenotypes and characteristics of miR-141-3p-EVs. miR-141- 3p-EVs successfully reduced the inflammatory level of human biliary epithelial cells (HIBEC) and lowered, <i>via</i> the MAPK pathway, MUC5AC expression. In an experiment involving an animal model of intrahepatic bile duct stones, miR-141-3p-EVs effectively alleviated stone formation, and the intrinsic mechanism was associated with the decreased level of MAPK pathway expression. In conclusion, results suggested that the EV-based strategy of miR- 141-3p delivery to intrahepatic bile duct epithelial cells has value and provides a new approach for the treatment of intrahepatic biliary stone disease.</p>","PeriodicalId":14420,"journal":{"name":"Intractable & rare diseases research","volume":"14 1","pages":"67-75"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intractable & rare diseases research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/irdr.2024.01051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intrahepatic bile duct stone disease has a high morbidity in China, with a high rate of additional surgery, a high rate of cancer development, and a high disease burden. Activation of the MAPK pathway leading to up-regulation of MUC5AC expression is an important factor in the formation of intrahepatic bile duct stones. Exosomes or extracellular vesicles (EVs) can be used as therapeutic vectors to encapsulate and carry drugs into diseased cells to achieve a therapeutic effect. The current study alleviated intrahepatic bile duct stone disease by preparing EVs carrying miR-141-3p. First, the researchers loaded mesenchymal stem cell (ESC)-derived EVs with miR-141-3p (miR-141-3p-EVs) and verified the phenotypes and characteristics of miR-141-3p-EVs. miR-141- 3p-EVs successfully reduced the inflammatory level of human biliary epithelial cells (HIBEC) and lowered, via the MAPK pathway, MUC5AC expression. In an experiment involving an animal model of intrahepatic bile duct stones, miR-141-3p-EVs effectively alleviated stone formation, and the intrinsic mechanism was associated with the decreased level of MAPK pathway expression. In conclusion, results suggested that the EV-based strategy of miR- 141-3p delivery to intrahepatic bile duct epithelial cells has value and provides a new approach for the treatment of intrahepatic biliary stone disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intractable & rare diseases research
Intractable & rare diseases research MEDICINE, GENERAL & INTERNAL-
CiteScore
2.10
自引率
0.00%
发文量
29
期刊最新文献
A bibliometric study of rare diseases in English and Chinese databases from 1985 to 2024 based on CiteSpace. A novel ETFDH mutation identified in a patient with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Evaluating the impact of mandibular developmental abnormalities and distraction osteogenesis on swallowing function in Pierre Robin Sequence. Herpes zoster central nervous system complication: An increasing trend of acute limbic encephalitis. miR-141-3p-loaded extracellular vesicles ameliorate intrahepatic bile duct stone disease by decreasing MUC5AC expression via the MAPK pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1