The reaction specificity of mammalian ALOX15B orthologs does not depend on the evolutionary ranking of the animals.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Lipid Research Pub Date : 2025-03-03 DOI:10.1016/j.jlr.2025.100768
Eda Gündem, Sabine Stehling, Astrid Borchert, Hartmut Kuhn
{"title":"The reaction specificity of mammalian ALOX15B orthologs does not depend on the evolutionary ranking of the animals.","authors":"Eda Gündem, Sabine Stehling, Astrid Borchert, Hartmut Kuhn","doi":"10.1016/j.jlr.2025.100768","DOIUrl":null,"url":null,"abstract":"<p><p>Lipoxygenases (ALOX) play important roles in cell differentiation and in the pathogenesis of cardio-vascular, hyperproliferative, neurodegenerative and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX-isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15-HpETE but 12-HpETE is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100768"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100768","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipoxygenases (ALOX) play important roles in cell differentiation and in the pathogenesis of cardio-vascular, hyperproliferative, neurodegenerative and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX-isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15-HpETE but 12-HpETE is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
期刊最新文献
High density lipoproteins and COVID-19: preparing the next pandemic. Impact of Genetic Markers related to Hyper-HDL Cholesterol on the Prevalence of Myocardial Infarction: A KoGES study. Potential causal evidence for an ApoB-independent and HDL-related risk profile associated with coronary artery disease. Hexokinase 2 Promotes ISGylation of Acyl-CoA Synthetase Long-chain Family Member 4 in Sepsis-Induced Microglia Cells. Insulin regulates lymphatic endothelial integrity via palmitoylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1