Min Uk Jung, Yeo Cheon Kim, Ghislain Bournival, Seher Ata
{"title":"Tailoring bubble size through acoustic-assisted microbubble generation","authors":"Min Uk Jung, Yeo Cheon Kim, Ghislain Bournival, Seher Ata","doi":"10.1002/aic.18802","DOIUrl":null,"url":null,"abstract":"Various bubble generation methods have been developed to produce microbubbles, but current techniques are inadequate for meeting industrial demands for controlling the size of microbubbles accurately. This study aimed to investigate acoustic bubble generation as a potential solution to the demand. Initially, a capillary tube was exposed to a continuous standing wave to control the bubble generation, which resulted in a relatively large bubble size and number. However, the extent of bubble coalescence was high due to the attractive secondary acoustic radiation force (ARF) between vibrating bubbles. Alternatively, a pulsed wave could reduce attractive ARF, thereby simultaneously reducing bubble coalescence and controlling the bubble generation frequency and size. However, this approach compromised the quantity of bubbles generated. The research contributes to the mass production of microbubbles and the strategic control of bubble size to optimize process efficiency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Various bubble generation methods have been developed to produce microbubbles, but current techniques are inadequate for meeting industrial demands for controlling the size of microbubbles accurately. This study aimed to investigate acoustic bubble generation as a potential solution to the demand. Initially, a capillary tube was exposed to a continuous standing wave to control the bubble generation, which resulted in a relatively large bubble size and number. However, the extent of bubble coalescence was high due to the attractive secondary acoustic radiation force (ARF) between vibrating bubbles. Alternatively, a pulsed wave could reduce attractive ARF, thereby simultaneously reducing bubble coalescence and controlling the bubble generation frequency and size. However, this approach compromised the quantity of bubbles generated. The research contributes to the mass production of microbubbles and the strategic control of bubble size to optimize process efficiency.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.