Hongshun Du, Fang Wang, ZeWen Li, Song Li, Yu Luo, XingBo Chen, Lei Zheng, Yemei Han, Yan Cheng, Qing Luo, Kailiang Zhang
{"title":"Reconfigurable Al2O3-Based Memristor for All-in-One Artificial Synapse and Nociceptor Neurons","authors":"Hongshun Du, Fang Wang, ZeWen Li, Song Li, Yu Luo, XingBo Chen, Lei Zheng, Yemei Han, Yan Cheng, Qing Luo, Kailiang Zhang","doi":"10.1021/acs.jpclett.5c00184","DOIUrl":null,"url":null,"abstract":"Multifunctional bionic devices have widespread applications in neuromorphic computing, intelligent sensors, and robotics. The inherent properties of memristors make them suitable for these emerging applications, but different applications require either volatile or nonvolatile operations in a unique device. In this work, we have developed a novel reconfigurable Ag/Al<sub>2</sub>O<sub>3</sub>/ITO memristor, which achieves adjustable switching behavior between volatile switching and nonvolatile switching by modulating the compliance current. A proposed mechanism controls the state of the conductive filaments in the device by adjusting compliance current, elucidating the adjustable switching process between volatile and nonvolatile states. Additionally, the synaptic functionality and nociceptor characteristics, including threshold, relaxation, inadaptation, and sensitization, have been successfully simulated. This integration of artificial synaptic and nociceptor functions into a single device is achieved, with the single-pulse power consumption of the nociceptor reaching as low as 0.912 nJ when the threshold is reached. These results provide insights into the construction of multifunctional bionic devices and demonstrate significant potential for future neuromorphic network applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"12 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00184","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional bionic devices have widespread applications in neuromorphic computing, intelligent sensors, and robotics. The inherent properties of memristors make them suitable for these emerging applications, but different applications require either volatile or nonvolatile operations in a unique device. In this work, we have developed a novel reconfigurable Ag/Al2O3/ITO memristor, which achieves adjustable switching behavior between volatile switching and nonvolatile switching by modulating the compliance current. A proposed mechanism controls the state of the conductive filaments in the device by adjusting compliance current, elucidating the adjustable switching process between volatile and nonvolatile states. Additionally, the synaptic functionality and nociceptor characteristics, including threshold, relaxation, inadaptation, and sensitization, have been successfully simulated. This integration of artificial synaptic and nociceptor functions into a single device is achieved, with the single-pulse power consumption of the nociceptor reaching as low as 0.912 nJ when the threshold is reached. These results provide insights into the construction of multifunctional bionic devices and demonstrate significant potential for future neuromorphic network applications.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.