Ashutosh Shukla, Rahul Chand, Sneha Boby, G. V. Pavan Kumar
{"title":"Synchronized Motion of Gold Nanoparticles in an Optothermal Trap","authors":"Ashutosh Shukla, Rahul Chand, Sneha Boby, G. V. Pavan Kumar","doi":"10.1021/acs.jpcc.4c07912","DOIUrl":null,"url":null,"abstract":"Optical tweezers have revolutionized particle manipulation at the micro- and nanoscale, playing a critical role in fields such as plasmonics, biophysics, and nanotechnology. While traditional optical trapping methods primarily rely on optical forces to manipulate and organize particles, recent studies suggest that optothermal traps in surfactant solutions can induce unconventional effects such as enhanced trapping stiffness and increased diffusion. Thus, there is a need for further exploration of this system to gain a deeper understanding of the forces involved. This work investigates the behavior of gold nanoparticles confined in an optothermal trap around a heated anchor particle in a surfactant (CTAC) solution. We observe unexpected radial confinement and synchronized rotational diffusion of particles at micrometre-scale separations from the anchor particle. These dynamics differ from known optical binding and thermophoretic effects, suggesting unexplored forces facilitated by the surfactant environment. This study expands the understanding of optothermal trapping driven by anchor plasmonic particles. It introduces new possibilities for nanoparticle assembly, offering insights with potential applications in nanoscale fabrication and materials science.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"53 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07912","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optical tweezers have revolutionized particle manipulation at the micro- and nanoscale, playing a critical role in fields such as plasmonics, biophysics, and nanotechnology. While traditional optical trapping methods primarily rely on optical forces to manipulate and organize particles, recent studies suggest that optothermal traps in surfactant solutions can induce unconventional effects such as enhanced trapping stiffness and increased diffusion. Thus, there is a need for further exploration of this system to gain a deeper understanding of the forces involved. This work investigates the behavior of gold nanoparticles confined in an optothermal trap around a heated anchor particle in a surfactant (CTAC) solution. We observe unexpected radial confinement and synchronized rotational diffusion of particles at micrometre-scale separations from the anchor particle. These dynamics differ from known optical binding and thermophoretic effects, suggesting unexplored forces facilitated by the surfactant environment. This study expands the understanding of optothermal trapping driven by anchor plasmonic particles. It introduces new possibilities for nanoparticle assembly, offering insights with potential applications in nanoscale fabrication and materials science.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.