Influence of Measurement Geometry and Blank on Absolute Measurements of Photoluminescence Quantum Yields of Scattering Luminescent Films

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-03-07 DOI:10.1021/acs.analchem.4c06726
Florian Frenzel, Saskia Fiedler, Ahmad Bardan, Arne Güttler, Christian Würth, Ute Resch-Genger
{"title":"Influence of Measurement Geometry and Blank on Absolute Measurements of Photoluminescence Quantum Yields of Scattering Luminescent Films","authors":"Florian Frenzel, Saskia Fiedler, Ahmad Bardan, Arne Güttler, Christian Würth, Ute Resch-Genger","doi":"10.1021/acs.analchem.4c06726","DOIUrl":null,"url":null,"abstract":"For a series of 500 μm-thick polyurethane films containing different concentrations of luminescent and scattering YAG:Ce microparticles, we systematically explored and quantified pitfalls of absolute measurements of photoluminescence quantum yields (Φ<sub>f</sub>) for often employed integrating sphere (IS) geometries, where the sample is placed either on a sample holder at the bottom of the IS surface or mounted in the IS center. Thereby, the influence of detection and illumination geometry and sample position was examined using blanks with various scattering properties for measuring the number of photons absorbed by the sample. Our results reveal that (i) setup configurations where the scattering sample is mounted in the IS center and (ii) transparent blanks can introduce systematic errors in absolute Φ<sub>f</sub> measurements. For strongly scattering, luminescent samples, this can result in either an under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φ<sub>f</sub>. The size of these uncertainties depends on the scattering properties of the sample and instrument parameters, such as sample position, IS size, wavelength-dependent reflectivity of the IS surface coating, and port configuration. For accurate and reliable absolute Φ<sub>f</sub> measurements, we recommend (i) a blank with scattering properties closely matching those of the sample to realize similar distributions of the diffusely scattered excitation photons within the IS, and (ii) a sufficiently high sample absorption at the excitation wavelength. For IS setups with center-mounted samples, measurement geometries should be utilized that prevent the loss of excitation photons by reflections from the sample out of the IS.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"37 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a series of 500 μm-thick polyurethane films containing different concentrations of luminescent and scattering YAG:Ce microparticles, we systematically explored and quantified pitfalls of absolute measurements of photoluminescence quantum yields (Φf) for often employed integrating sphere (IS) geometries, where the sample is placed either on a sample holder at the bottom of the IS surface or mounted in the IS center. Thereby, the influence of detection and illumination geometry and sample position was examined using blanks with various scattering properties for measuring the number of photons absorbed by the sample. Our results reveal that (i) setup configurations where the scattering sample is mounted in the IS center and (ii) transparent blanks can introduce systematic errors in absolute Φf measurements. For strongly scattering, luminescent samples, this can result in either an under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φf. The size of these uncertainties depends on the scattering properties of the sample and instrument parameters, such as sample position, IS size, wavelength-dependent reflectivity of the IS surface coating, and port configuration. For accurate and reliable absolute Φf measurements, we recommend (i) a blank with scattering properties closely matching those of the sample to realize similar distributions of the diffusely scattered excitation photons within the IS, and (ii) a sufficiently high sample absorption at the excitation wavelength. For IS setups with center-mounted samples, measurement geometries should be utilized that prevent the loss of excitation photons by reflections from the sample out of the IS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Closed-Loop Navigation of a Kinetic Zone Diagram for Redox-Mediated Electrocatalysis Using Bayesian Optimization, a Digital Twin, and Automated Electrochemistry Organelle-Targeted Photo-triggered Delivery of Acetylperoxyl Radicals for Redox Homeostasis Modulation Influence of Measurement Geometry and Blank on Absolute Measurements of Photoluminescence Quantum Yields of Scattering Luminescent Films Rationally Designed Cerium-Assembled Carbon Dot Phosphatase-Like Nanozyme Hydrogel in Tandem with 5,7-Dimethoxycoumarin for Sensitive, Selective, Wide-Range, Complementary Dual-Mode Biosensing of Paraoxon Effects of Surface Charge of Amphiphilic Peptides on Peptide–Lipid Interactions in the Gas Phase and in Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1