Optical Self-Adjusting Data Center Networks in the Scalable Matching Model

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-12-04 DOI:10.1109/TCC.2024.3510916
Caio Alves Caldeira;Otávio Augusto de Oliveira Souza;Olga Goussevskaia;Stefan Schmid
{"title":"Optical Self-Adjusting Data Center Networks in the Scalable Matching Model","authors":"Caio Alves Caldeira;Otávio Augusto de Oliveira Souza;Olga Goussevskaia;Stefan Schmid","doi":"10.1109/TCC.2024.3510916","DOIUrl":null,"url":null,"abstract":"Self-Adjusting Networks (SAN) optimize their physical topology toward the demand in an online manner. Their application in data center networks is motivated by emerging hardware technologies, such as 3D MEMS Optical Circuit Switches (OCS). The Matching Model (MM) has been introduced to study the hybrid architecture of such networks. It abstracts from the electrical switches and focuses on the added (reconfigurable) optical ones. MM defines any SAN topology as a union of matchings over a set of top-of-rack (ToR) nodes, and assumes that rearranging the edges of a single matching comes at a fixed cost. In this work, we propose and study the Scalable Matching Model (SMM), a generalization of the MM, and present OpticNet, a framework that maps a set of ToRs to a set of OCSs to form a SAN topology. We prove that OpticNet uses the minimum number of switches to realize any bounded-degree topology and allows existing SAN algorithms to run on top of it, while preserving amortized performance guarantees. Our experimental results based on real workloads show that OpticNet is a flexible and efficient framework for the implementation and evaluation of SAN algorithms in reconfigurable data center environments.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"87-98"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777613/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-Adjusting Networks (SAN) optimize their physical topology toward the demand in an online manner. Their application in data center networks is motivated by emerging hardware technologies, such as 3D MEMS Optical Circuit Switches (OCS). The Matching Model (MM) has been introduced to study the hybrid architecture of such networks. It abstracts from the electrical switches and focuses on the added (reconfigurable) optical ones. MM defines any SAN topology as a union of matchings over a set of top-of-rack (ToR) nodes, and assumes that rearranging the edges of a single matching comes at a fixed cost. In this work, we propose and study the Scalable Matching Model (SMM), a generalization of the MM, and present OpticNet, a framework that maps a set of ToRs to a set of OCSs to form a SAN topology. We prove that OpticNet uses the minimum number of switches to realize any bounded-degree topology and allows existing SAN algorithms to run on top of it, while preserving amortized performance guarantees. Our experimental results based on real workloads show that OpticNet is a flexible and efficient framework for the implementation and evaluation of SAN algorithms in reconfigurable data center environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展匹配模型中的光自调整数据中心网络
自调整网络(SAN)以在线的方式根据需求对其物理拓扑进行优化。它们在数据中心网络中的应用受到新兴硬件技术的推动,例如3D MEMS光电路开关(OCS)。引入匹配模型(MM)来研究这种网络的混合结构。它从电气开关抽象出来,重点关注增加的(可重构的)光学开关。MM将任何SAN拓扑定义为一组机架顶(top-of-rack, ToR)节点上的匹配并集,并假设重新排列单个匹配的边缘需要固定的代价。在这项工作中,我们提出并研究了可扩展匹配模型(SMM),这是可扩展匹配模型的一种推广,并提出了OpticNet,这是一个将一组tor映射到一组OCSs以形成SAN拓扑的框架。我们证明了OpticNet使用最少数量的交换机来实现任何有界度拓扑,并允许现有的SAN算法在其上运行,同时保持平摊性能保证。基于实际工作负载的实验结果表明,OpticNet是在可重构数据中心环境中实现和评估SAN算法的灵活高效的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
DRKC: Deep Reinforcement Learning Enhanced Microservice Scheduling on Kubernetes Clusters in Cloud-Edge Environment Budget-Feasible Clock Mechanism for Hierarchical Computation Offloading in Edge-Vehicle Collaborative Computing Lightweight Conditional Privacy-Preserving Scheme for VANET Communications Comments on “Blockchain-Assisted Public-Key Encryption With Keyword Search Against Keyword Guessing Attacks for Cloud Storage” Forward-Secure Multi-User Graph Searchable Encryption for Exact Shortest Path Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1