CoreSense: Social Commonsense Knowledge-Aware Context Refinement for Conversational Recommender System

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2025-01-30 DOI:10.1109/TKDE.2025.3536464
Hyeongjun Yang;Donghyun Kim;Gayeon Park;KyuHwan Yeom;Kyong-Ho Lee
{"title":"CoreSense: Social Commonsense Knowledge-Aware Context Refinement for Conversational Recommender System","authors":"Hyeongjun Yang;Donghyun Kim;Gayeon Park;KyuHwan Yeom;Kyong-Ho Lee","doi":"10.1109/TKDE.2025.3536464","DOIUrl":null,"url":null,"abstract":"Unlike the traditional recommender systems that rely on historical data such as clicks or purchases, a conversational recommender system (CRS) aims to provide a personalized recommendation through a natural conversation. The conversational interaction facilitates capturing not only explicit preference from mentioned items but also implicit states, such as a user’s current situation and emotional states from a dialogue context. Nevertheless, existing CRSs fall short of fully exploiting a dialogue context since they primarily derive explicit user preferences from the items and item-attributes mentioned in a conversation. To address this limitation and attain a comprehensive understanding of a dialogue context, we propose <underline>CoreSense</u>, a <underline>co</u>nversational <underline>re</u>commender system enhanced with social common<underline>sense</u> knowledge. In other words, CoreSense exploits the social commonsense knowledge graph ATOMIC to capture the user’s implicit states, such as a user’s current situation and emotional states, from a dialogue context. Thus, the social commonsense knowledge-augmented CRS can provide a more appropriate recommendation from a given dialogue context. Furthermore, we enhance the collaborative filtering effect by utilizing the user’s states inferred from commonsense knowledge as an improved criterion for retrieving other dialogues of similar interests. Extensive experiments on CRS benchmark datasets show that CoreSense provides human-like recommendations and responses based on inferred user states, achieving significant performance improvements.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1702-1713"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858398/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike the traditional recommender systems that rely on historical data such as clicks or purchases, a conversational recommender system (CRS) aims to provide a personalized recommendation through a natural conversation. The conversational interaction facilitates capturing not only explicit preference from mentioned items but also implicit states, such as a user’s current situation and emotional states from a dialogue context. Nevertheless, existing CRSs fall short of fully exploiting a dialogue context since they primarily derive explicit user preferences from the items and item-attributes mentioned in a conversation. To address this limitation and attain a comprehensive understanding of a dialogue context, we propose CoreSense, a conversational recommender system enhanced with social commonsense knowledge. In other words, CoreSense exploits the social commonsense knowledge graph ATOMIC to capture the user’s implicit states, such as a user’s current situation and emotional states, from a dialogue context. Thus, the social commonsense knowledge-augmented CRS can provide a more appropriate recommendation from a given dialogue context. Furthermore, we enhance the collaborative filtering effect by utilizing the user’s states inferred from commonsense knowledge as an improved criterion for retrieving other dialogues of similar interests. Extensive experiments on CRS benchmark datasets show that CoreSense provides human-like recommendations and responses based on inferred user states, achieving significant performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
RAGIC: Risk-Aware Generative Framework for Stock Interval Construction Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond Boosting GNN-Based Link Prediction via PU-AUC Optimization CLEAR: Spatial-Temporal Traffic Data Representation Learning for Traffic Prediction CoreSense: Social Commonsense Knowledge-Aware Context Refinement for Conversational Recommender System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1