Changes in rainfall impact the release of metal elements in the litter of a subtropical mixed forest.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-03-04 DOI:10.1016/j.envres.2025.121293
Jian Feng, Yunchao Zhou, Yunxing Bai, Manyi Fan, Yaoxiong Wang, Fenghua Tang, Jirong Feng
{"title":"Changes in rainfall impact the release of metal elements in the litter of a subtropical mixed forest.","authors":"Jian Feng, Yunchao Zhou, Yunxing Bai, Manyi Fan, Yaoxiong Wang, Fenghua Tang, Jirong Feng","doi":"10.1016/j.envres.2025.121293","DOIUrl":null,"url":null,"abstract":"<p><p>The release of metal elements from litter decomposition in forest ecosystems is crucial for material cycling and ecosystem health, but the impact of future variations in rainfall due to climatic fluctuations on this release is unknown. This study conducted an outdoor rainfall variability simulation and an in situ litter decomposition experiment in a subtropical location, with a focus on pure Pinus massoniana (PM) and four PM mixed stands (PM+Bretschneidera sinensis, PM+Cercidiphyllum japonicum, PM+Taxus wallichiana, and PM+Nageia nagi). We studied the release of metal elements from litter after one year of decomposition under different rainfall conditions (30% increase, natural, and 30% decrease) and calculated the mixing effect on the litter. The results showed that K, Mg, Mn, Cu and Zn were released and Na, Ca and Fe were enriched after one year of litter decomposition. Increased rainfall promoted K, Na, Mg, Mn, and Zn release, reduced Fe and Cu release, enhanced the synergistic effect of Na and Mn release, and exacerbated the antagonistic effect of Cu. Decreased rainfall reduced the synergistic effect of mixed litter on the release of Na, Ca, Mg, and Fe, while enhancing the synergistic effect of Mn and Zn. The lower degree of metal element release from single PM litter resulted in the enrichment of metal elements in the litter of apoplasts. The effect of rainfall variability on metal element release was more significant compared to tree species characteristics. Overall, decreased rainfall inhibited metal element release and slowed down element cycling; increased rainfall promoted Na and Mn release and accelerated Cu enrichment. It is noteworthy that mixed litter effectively mitigated the effects of rainfall changes on metal element release by regulating elemental cycling. The findings of this study add to a better understanding of nutrient dynamics in forest ecosystems and offer techniques and insights for addressing future climate change.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"121293"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.121293","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The release of metal elements from litter decomposition in forest ecosystems is crucial for material cycling and ecosystem health, but the impact of future variations in rainfall due to climatic fluctuations on this release is unknown. This study conducted an outdoor rainfall variability simulation and an in situ litter decomposition experiment in a subtropical location, with a focus on pure Pinus massoniana (PM) and four PM mixed stands (PM+Bretschneidera sinensis, PM+Cercidiphyllum japonicum, PM+Taxus wallichiana, and PM+Nageia nagi). We studied the release of metal elements from litter after one year of decomposition under different rainfall conditions (30% increase, natural, and 30% decrease) and calculated the mixing effect on the litter. The results showed that K, Mg, Mn, Cu and Zn were released and Na, Ca and Fe were enriched after one year of litter decomposition. Increased rainfall promoted K, Na, Mg, Mn, and Zn release, reduced Fe and Cu release, enhanced the synergistic effect of Na and Mn release, and exacerbated the antagonistic effect of Cu. Decreased rainfall reduced the synergistic effect of mixed litter on the release of Na, Ca, Mg, and Fe, while enhancing the synergistic effect of Mn and Zn. The lower degree of metal element release from single PM litter resulted in the enrichment of metal elements in the litter of apoplasts. The effect of rainfall variability on metal element release was more significant compared to tree species characteristics. Overall, decreased rainfall inhibited metal element release and slowed down element cycling; increased rainfall promoted Na and Mn release and accelerated Cu enrichment. It is noteworthy that mixed litter effectively mitigated the effects of rainfall changes on metal element release by regulating elemental cycling. The findings of this study add to a better understanding of nutrient dynamics in forest ecosystems and offer techniques and insights for addressing future climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota–gut–brain axis Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red Synergistic microalgae-duckweed systems for enhanced aquaculture wastewater treatment, biomass recovery, and CO2 sequestration: A novel approach for sustainable resource recovery Metabolic and ecological responses of denitrifying consortia to different carbon source strategies under fluctuating C/N conditions Fe3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1