New insights into Peniophora crassitunicata and its co-inoculation with commercial microbial inoculant accelerating lignocellulose degradation and compost maturation during orchard wastes composting.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-03-04 DOI:10.1016/j.envres.2025.121298
Juan Zhan, Qinghua Liu, Junwen Chen, Xueyong Pang
{"title":"New insights into Peniophora crassitunicata and its co-inoculation with commercial microbial inoculant accelerating lignocellulose degradation and compost maturation during orchard wastes composting.","authors":"Juan Zhan, Qinghua Liu, Junwen Chen, Xueyong Pang","doi":"10.1016/j.envres.2025.121298","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic composting has been widely promoted in the utilization of agricultural wastes, while few focus on orchard lignocellulosic wastes in the fruit industry. Peniophora is a laccase hyper-producer highly efficient in lignin degradation, yet its application in lignocellulosic composting has not been investigated. Here, an aerobic composting experiment was conducted to investigate the effects of inoculation with Peniophora crassitunicata and a commercial microbial inoculant (mainly Bacillus and Aspergillus) on grape (Vitis Vinifera L.) orchard lignocellulosic wastes degradation and the underlying mechanisms. The inoculation with P. crassitunicata, both individually (H) and in combination with the commercial microbial inoculant (HS), enhanced lignocellulose degradation efficiency. Notably, the co-inoculation exhibited higher lignocellulose degradation ratios and higher lignocellulosic enzyme activities compared to other treatments. The compost piles with co-inoculation experienced a more rapid temperature rise, a longer duration (15 days) of high temperatures, lower pH, and lower electrical conductivity (EC). Firmicutes (e.g. Bacillus, Paenibacillus) and Ascomycota (e.g. Aspergillus) along with Bacteroidota, Actinobacteriota, and Basidiomycota (e.g. Peniophora) dominated the microbial community in compost; carbohydrate metabolism dominated microbial metabolic pathways at the thermophilic phase, highlighting an active microbial community. As compost processed, highly mature and non-toxic compost products were finally obtained for the co-inoculation, with a pH of 7.87, C/N ratio of 13.5, NH<sub>4</sub><sup>+</sup>-N/NO<sub>3</sub><sup>‾</sup>-N ratio of 0.21-0.41, EC of 0.90 mS cm<sup>-1</sup>, and germination index of 149 %. The co-inoculation of P. crassitunicata with the commercial microbial inoculant effectively accelerated lignocellulose degradation and compost maturation, producing a friendly and non-toxic organic fertilizer for agricultural applications and thereby providing a new strategy for orchard wastes management and agricultural applications.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"121298"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.121298","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic composting has been widely promoted in the utilization of agricultural wastes, while few focus on orchard lignocellulosic wastes in the fruit industry. Peniophora is a laccase hyper-producer highly efficient in lignin degradation, yet its application in lignocellulosic composting has not been investigated. Here, an aerobic composting experiment was conducted to investigate the effects of inoculation with Peniophora crassitunicata and a commercial microbial inoculant (mainly Bacillus and Aspergillus) on grape (Vitis Vinifera L.) orchard lignocellulosic wastes degradation and the underlying mechanisms. The inoculation with P. crassitunicata, both individually (H) and in combination with the commercial microbial inoculant (HS), enhanced lignocellulose degradation efficiency. Notably, the co-inoculation exhibited higher lignocellulose degradation ratios and higher lignocellulosic enzyme activities compared to other treatments. The compost piles with co-inoculation experienced a more rapid temperature rise, a longer duration (15 days) of high temperatures, lower pH, and lower electrical conductivity (EC). Firmicutes (e.g. Bacillus, Paenibacillus) and Ascomycota (e.g. Aspergillus) along with Bacteroidota, Actinobacteriota, and Basidiomycota (e.g. Peniophora) dominated the microbial community in compost; carbohydrate metabolism dominated microbial metabolic pathways at the thermophilic phase, highlighting an active microbial community. As compost processed, highly mature and non-toxic compost products were finally obtained for the co-inoculation, with a pH of 7.87, C/N ratio of 13.5, NH4+-N/NO3-N ratio of 0.21-0.41, EC of 0.90 mS cm-1, and germination index of 149 %. The co-inoculation of P. crassitunicata with the commercial microbial inoculant effectively accelerated lignocellulose degradation and compost maturation, producing a friendly and non-toxic organic fertilizer for agricultural applications and thereby providing a new strategy for orchard wastes management and agricultural applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota–gut–brain axis Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red Synergistic microalgae-duckweed systems for enhanced aquaculture wastewater treatment, biomass recovery, and CO2 sequestration: A novel approach for sustainable resource recovery Metabolic and ecological responses of denitrifying consortia to different carbon source strategies under fluctuating C/N conditions Fe3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1