Placental malaria induces a unique methylation profile associated with fetal growth restriction.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-03-06 DOI:10.1080/15592294.2025.2475276
Nida Ozarslan, Corina Mong, John Ategeka, Lin Li, Sirirak Buarpung, Joshua F Robinson, Jimmy Kizza, Abel Kakuru, Moses R Kamya, Grant Dorsey, Philip J Rosenthal, Stephanie L Gaw
{"title":"Placental malaria induces a unique methylation profile associated with fetal growth restriction.","authors":"Nida Ozarslan, Corina Mong, John Ategeka, Lin Li, Sirirak Buarpung, Joshua F Robinson, Jimmy Kizza, Abel Kakuru, Moses R Kamya, Grant Dorsey, Philip J Rosenthal, Stephanie L Gaw","doi":"10.1080/15592294.2025.2475276","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal growth restriction (FGR) is associated with perinatal death and adverse birth outcomes, as well as long-term complications, including increased childhood morbidity, abnormal neurodevelopment, and cardio-metabolic diseases in adulthood. Placental epigenetic reprogramming associated with FGR may mediate these long-term outcomes. Placental malaria (PM), characterized by sequestration of <i>Plasmodium falciparum</i>-infected erythrocytes in placental intervillous space, is the leading global cause of FGR, but its impact on placental epigenetics is unknown. We hypothesized that placental methylomic profiling would reveal common and distinct mechanistic pathways of non-malarial and PM-associated FGR. We analyzed placentas from a US cohort with no malaria exposure (<i>n</i> = 12) and a cohort from eastern Uganda, a region with a high prevalence of malaria (<i>n</i> = 12). From each site, 8 cases of FGR and 4 healthy controls were analyzed. PM was diagnosed by placental histopathology. We compared the methylation levels of over 850K CpGs of the placentas using Infinium MethylationEPIC v1 microarray. Non-malarial FGR was associated with 65 differentially methylated CpGs (DMCs), whereas PM-FGR was associated with 133 DMCs, compared to their corresponding controls without FGR. One DMC (cg16389901, located in the promoter region of <i>BMP4</i>) was commonly hypomethylated in both groups. We identified 522 DMCs between non-malarial FGR vs. PM-FGR placentas, independent of differing geographic location or cellular composition. Placentas with PM-associated FGR have distinct methylation profiles compared to placentas with non-malarial FGR, suggesting novel epigenetic reprogramming in response to malaria. Larger cohort studies are needed to determine the distinct long-term health outcomes in PM-associated FGR pregnancies.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2475276"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2475276","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fetal growth restriction (FGR) is associated with perinatal death and adverse birth outcomes, as well as long-term complications, including increased childhood morbidity, abnormal neurodevelopment, and cardio-metabolic diseases in adulthood. Placental epigenetic reprogramming associated with FGR may mediate these long-term outcomes. Placental malaria (PM), characterized by sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous space, is the leading global cause of FGR, but its impact on placental epigenetics is unknown. We hypothesized that placental methylomic profiling would reveal common and distinct mechanistic pathways of non-malarial and PM-associated FGR. We analyzed placentas from a US cohort with no malaria exposure (n = 12) and a cohort from eastern Uganda, a region with a high prevalence of malaria (n = 12). From each site, 8 cases of FGR and 4 healthy controls were analyzed. PM was diagnosed by placental histopathology. We compared the methylation levels of over 850K CpGs of the placentas using Infinium MethylationEPIC v1 microarray. Non-malarial FGR was associated with 65 differentially methylated CpGs (DMCs), whereas PM-FGR was associated with 133 DMCs, compared to their corresponding controls without FGR. One DMC (cg16389901, located in the promoter region of BMP4) was commonly hypomethylated in both groups. We identified 522 DMCs between non-malarial FGR vs. PM-FGR placentas, independent of differing geographic location or cellular composition. Placentas with PM-associated FGR have distinct methylation profiles compared to placentas with non-malarial FGR, suggesting novel epigenetic reprogramming in response to malaria. Larger cohort studies are needed to determine the distinct long-term health outcomes in PM-associated FGR pregnancies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
期刊最新文献
DNA-based cell typing in menstrual effluent identifies cell type variation by sample collection method: toward noninvasive biomarker development for women's health. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Timing of dietary effects on the epigenome and their potential protective effects against toxins. Astrocyte-derived exosomes regulate sperm miR-34c levels to mediate the transgenerational effects of paternal chronic social instability stress. Deciphering the interplay between SETD2 mediated H3K36me3 and RNA N6-methyladenosine in clear cell renal cell carcinoma (ccRCC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1