Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years.

IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Molecular Autism Pub Date : 2025-03-06 DOI:10.1186/s13229-025-00652-6
Young Seon Shin, Danielle Christensen, Jingying Wang, Desirae J Shirley, Ann-Marie Orlando, Regilda A Romero, David E Vaillancourt, Bradley J Wilkes, Stephen A Coombes, Zheng Wang
{"title":"Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years.","authors":"Young Seon Shin, Danielle Christensen, Jingying Wang, Desirae J Shirley, Ann-Marie Orlando, Regilda A Romero, David E Vaillancourt, Bradley J Wilkes, Stephen A Coombes, Zheng Wang","doi":"10.1186/s13229-025-00652-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a lifelong condition that profoundly impacts health, independence, and quality of life. However, research on brain aging in autistic adults is limited, and microstructural variations in white and gray matter remain poorly understood. To address this critical gap, we assessed novel diffusion MRI (dMRI) biomarkers, free water, and free water corrected fractional anisotropy (fwcFA), and mean diffusivity (fwcMD) across 32 transcallosal tracts and their corresponding homotopic grey matter origin/endpoint regions of interest (ROIs) in middle and old aged autistic adults.</p><p><strong>Methods: </strong>Forty-three autistic adults aged 30-73 and 43 age-, sex-, and IQ-matched neurotypical controls underwent dMRI scans. We examined free water, fwcFA, fwcMD differences between the two groups and age-related pattern of each dMRI metric across the whole brain for each group. The relationships between clinical measures of ASD and free water in regions that significantly differentiated autistic adults from neurotypical controls were also explored. In supplementary analyses, we also assessed free water uncorrected FA and MD using conventional single tensor modeling.</p><p><strong>Results: </strong>Autistic adults exhibited significantly elevated free water in seven frontal transcallosal tracts compared to controls. In controls, age-related increases in free water and decreases in fwcFA were observed across most transcallosal tracts. However, these age-associated patterns were entirely absent in autistic adults. In gray matter, autistic adults showed elevated free water in the calcarine cortices and lower fwcMD in the dorsal premotor cortices compared to controls. Lastly, age-related increases in free water were found across all white matter and gray matter ROIs in neurotypical controls, whereas no age-related associations were detected in any dMRI metrics for autistic adults.</p><p><strong>Limitations: </strong>We only recruited cognitively capable autistic adults, which limits the generalizability of our findings across the full autism spectrum. The cross-sectional design precludes inferences about microstructural changes over time in middle and old aged autistic adults.</p><p><strong>Conclusions: </strong>Our findings revealed increased free water load in frontal white matter in autistic adults and identified distinct age-associated microstructural variations between the two groups. These findings highlight more heterogeneous brain aging profiles in autistic adults. Our study also demonstrated the importance of quantifying free water in dMRI studies of ASD.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"16 1","pages":"16"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-025-00652-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Autism spectrum disorder (ASD) is a lifelong condition that profoundly impacts health, independence, and quality of life. However, research on brain aging in autistic adults is limited, and microstructural variations in white and gray matter remain poorly understood. To address this critical gap, we assessed novel diffusion MRI (dMRI) biomarkers, free water, and free water corrected fractional anisotropy (fwcFA), and mean diffusivity (fwcMD) across 32 transcallosal tracts and their corresponding homotopic grey matter origin/endpoint regions of interest (ROIs) in middle and old aged autistic adults.

Methods: Forty-three autistic adults aged 30-73 and 43 age-, sex-, and IQ-matched neurotypical controls underwent dMRI scans. We examined free water, fwcFA, fwcMD differences between the two groups and age-related pattern of each dMRI metric across the whole brain for each group. The relationships between clinical measures of ASD and free water in regions that significantly differentiated autistic adults from neurotypical controls were also explored. In supplementary analyses, we also assessed free water uncorrected FA and MD using conventional single tensor modeling.

Results: Autistic adults exhibited significantly elevated free water in seven frontal transcallosal tracts compared to controls. In controls, age-related increases in free water and decreases in fwcFA were observed across most transcallosal tracts. However, these age-associated patterns were entirely absent in autistic adults. In gray matter, autistic adults showed elevated free water in the calcarine cortices and lower fwcMD in the dorsal premotor cortices compared to controls. Lastly, age-related increases in free water were found across all white matter and gray matter ROIs in neurotypical controls, whereas no age-related associations were detected in any dMRI metrics for autistic adults.

Limitations: We only recruited cognitively capable autistic adults, which limits the generalizability of our findings across the full autism spectrum. The cross-sectional design precludes inferences about microstructural changes over time in middle and old aged autistic adults.

Conclusions: Our findings revealed increased free water load in frontal white matter in autistic adults and identified distinct age-associated microstructural variations between the two groups. These findings highlight more heterogeneous brain aging profiles in autistic adults. Our study also demonstrated the importance of quantifying free water in dMRI studies of ASD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Autism
Molecular Autism GENETICS & HEREDITY-NEUROSCIENCES
CiteScore
12.10
自引率
1.60%
发文量
44
审稿时长
17 weeks
期刊介绍: Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.
期刊最新文献
Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years. Do autistic individuals show atypical performance in probabilistic learning? A comparison of cue-number, predictive strength, and prediction error. Autistic behavior is a common outcome of biallelic disruption of PDZD8 in humans and mice. Exploring EEG resting state differences in autism: sparse findings from a large cohort. Altered interactive dynamics of gaze behavior during face-to-face interaction in autistic individuals: a dual eye-tracking study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1