Myelin water fraction mapping with joint inversion of gradient-echo and spin-echo data.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2025-03-07 DOI:10.1007/s10334-025-01235-5
Ségolène Dega, Mónica Ferreira, Marten Veldmann, Rüdiger Stirnberg, Hendrik Paasche, Tony Stöcker
{"title":"Myelin water fraction mapping with joint inversion of gradient-echo and spin-echo data.","authors":"Ségolène Dega, Mónica Ferreira, Marten Veldmann, Rüdiger Stirnberg, Hendrik Paasche, Tony Stöcker","doi":"10.1007/s10334-025-01235-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate estimation of brain myelin-water content from multi-echo data is challenging due to the inherent ill-posedness of the inversion problem. In this study, we propose a novel method for myelin-water imaging that jointly utilizes gradient-echo and spin-echo imaging data to enhance the accuracy of myelin-water estimation.</p><p><strong>Material and methods: </strong>Multi-echo gradient-echo and spin-echo data were simulated and acquired in vivo. The simulations are based on a parameterized myelin and free water signal model, which is also used for the inversion by means of nonlinear local-search optimization. Single inversions of the individual datasets as well as joint inversion of the combined datasets were performed on simulated and real data. While single inversions estimate either the <math><msub><mi>T</mi> <mn>2</mn></msub> </math> or <math><mmultiscripts><mi>T</mi> <mrow><mn>2</mn></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> relaxation spectrum, the joint inversion estimates both spectra simultaneously.</p><p><strong>Results: </strong>Simulation results show that the accuracy of myelin-water imaging improves when jointly inverting gradient-echo and spin-echo synthetic data. In vivo experiments show that the joint inversion of both datasets leads to sharper and more distinct myelin-water images as compared to the individual inversions.</p><p><strong>Discussion: </strong>Our method addresses the ill-posed nature of the myelin-water inversion problem by leveraging complementary information from multi-echo gradient-echo and multi-echo spin-echo imaging sequences, thus improving the reliability of myelin-water quantification.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01235-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Accurate estimation of brain myelin-water content from multi-echo data is challenging due to the inherent ill-posedness of the inversion problem. In this study, we propose a novel method for myelin-water imaging that jointly utilizes gradient-echo and spin-echo imaging data to enhance the accuracy of myelin-water estimation.

Material and methods: Multi-echo gradient-echo and spin-echo data were simulated and acquired in vivo. The simulations are based on a parameterized myelin and free water signal model, which is also used for the inversion by means of nonlinear local-search optimization. Single inversions of the individual datasets as well as joint inversion of the combined datasets were performed on simulated and real data. While single inversions estimate either the T 2 or T 2 relaxation spectrum, the joint inversion estimates both spectra simultaneously.

Results: Simulation results show that the accuracy of myelin-water imaging improves when jointly inverting gradient-echo and spin-echo synthetic data. In vivo experiments show that the joint inversion of both datasets leads to sharper and more distinct myelin-water images as compared to the individual inversions.

Discussion: Our method addresses the ill-posed nature of the myelin-water inversion problem by leveraging complementary information from multi-echo gradient-echo and multi-echo spin-echo imaging sequences, thus improving the reliability of myelin-water quantification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Myelin water fraction mapping with joint inversion of gradient-echo and spin-echo data. MRI acquisition and reconstruction cookbook: recipes for reproducibility, served with real-world flavour. Whole pancreas water T1 mapping at 3 Tesla. A dual-stage framework for segmentation of the brain anatomical regions with high accuracy. Fast whole brain relaxometry with Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) at 3 T: a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1