PCBP2 promotes immune evasion via cGAS-STING pathway in biochemical recurrence of prostate cancer.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL APL Bioengineering Pub Date : 2025-03-05 eCollection Date: 2025-03-01 DOI:10.1063/5.0250173
Zeng Zhou, Tiewen Li, Yichen Zhang, Xuehao Zhou, Xiaodong Song, Shiyu Ji, Yishu Huang, Yu Zhang, Yuan Ruan
{"title":"PCBP2 promotes immune evasion via cGAS-STING pathway in biochemical recurrence of prostate cancer.","authors":"Zeng Zhou, Tiewen Li, Yichen Zhang, Xuehao Zhou, Xiaodong Song, Shiyu Ji, Yishu Huang, Yu Zhang, Yuan Ruan","doi":"10.1063/5.0250173","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy resistance is a significant obstacle in the treatment of prostate cancer (PCa), primarily due to immune evasion mechanisms. This study aims to explore cancer-intrinsic immune evasion-related genes (CIERGs) in PCa and develop a predictive signature for biochemical recurrence (BCR). Bulk RNA-seq data and single-cell RNA-sequencing (scRNA-seq) were obtained from TCGA and Gene Expression Omnibus database. The scRNA-seq data analysis revealed higher immune evasion scores in tumor cells compared to normal cells. Differentially expressed genes from TCGA-PRAD and GSE70769 cohorts were intersected with 182 core immune evasion genes, followed by univariate Cox regression, identifying 48 CIERGs significantly associated with BCR. Nonnegative matrix factorization (NMF) clustering revealed two immune evasion-related PCa subtypes. A risk signature based on CIERGs was developed using LASSO regression, and a nomogram was created to predict BCR-free survival. Among the 48 identified CIERGs, poly(C)-binding protein 2 (PCBP2) emerged as a key risk factor associated with poor prognosis in PCa, and its function was validated <i>in vitro</i>. NMF clustering identified two subtypes, with the C1 subtype having a poorer prognosis. Gene Set Variation Analysis highlighted enrichment in cell cycle, extracellular matrix receptor interaction, and transforming growth factor-beta signaling pathways in the C1 subtype. A CIERGs-based risk signature, including six key genes, was developed and validated, with the nomogram showing high predictive accuracy. <i>In vitro</i> experiments showed PCBP2 promotes PCa cell proliferation, migration, and invasion by inhibiting the cyclic GMP-AMP synthase-STING pathway. The CIERGs signature provides a precise prediction of BCR, with PCBP2 emerging as a potential therapeutic target due to its inhibition of the cGAS-STING pathway in PCa.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 1","pages":"016112"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0250173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy resistance is a significant obstacle in the treatment of prostate cancer (PCa), primarily due to immune evasion mechanisms. This study aims to explore cancer-intrinsic immune evasion-related genes (CIERGs) in PCa and develop a predictive signature for biochemical recurrence (BCR). Bulk RNA-seq data and single-cell RNA-sequencing (scRNA-seq) were obtained from TCGA and Gene Expression Omnibus database. The scRNA-seq data analysis revealed higher immune evasion scores in tumor cells compared to normal cells. Differentially expressed genes from TCGA-PRAD and GSE70769 cohorts were intersected with 182 core immune evasion genes, followed by univariate Cox regression, identifying 48 CIERGs significantly associated with BCR. Nonnegative matrix factorization (NMF) clustering revealed two immune evasion-related PCa subtypes. A risk signature based on CIERGs was developed using LASSO regression, and a nomogram was created to predict BCR-free survival. Among the 48 identified CIERGs, poly(C)-binding protein 2 (PCBP2) emerged as a key risk factor associated with poor prognosis in PCa, and its function was validated in vitro. NMF clustering identified two subtypes, with the C1 subtype having a poorer prognosis. Gene Set Variation Analysis highlighted enrichment in cell cycle, extracellular matrix receptor interaction, and transforming growth factor-beta signaling pathways in the C1 subtype. A CIERGs-based risk signature, including six key genes, was developed and validated, with the nomogram showing high predictive accuracy. In vitro experiments showed PCBP2 promotes PCa cell proliferation, migration, and invasion by inhibiting the cyclic GMP-AMP synthase-STING pathway. The CIERGs signature provides a precise prediction of BCR, with PCBP2 emerging as a potential therapeutic target due to its inhibition of the cGAS-STING pathway in PCa.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
期刊最新文献
Hydrodynamic efficient cell capture and pairing method on microfluidic cell electrofusion chip. PCBP2 promotes immune evasion via cGAS-STING pathway in biochemical recurrence of prostate cancer. Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. Epigenetic dynamics in meniscus cell migration and its zonal dependency in response to inflammatory conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1