Bao Xiao, Tianyu Liu, Dongdong Wang, Lei Tang, Lihua Zhou, Shaohua Gou
{"title":"Another Possible Rationale for Foam Stability: The Quantity and Strength of Hydrogen Bonds at the Gas-Liquid Interface.","authors":"Bao Xiao, Tianyu Liu, Dongdong Wang, Lei Tang, Lihua Zhou, Shaohua Gou","doi":"10.1021/acs.jpcb.4c08131","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the foams generated by three surfactants: sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium lauryl polyoxyethylene ether sulfate (AES). By analyzing the hydrogen bond at the gas-liquid interface, the research provides novel insights into the mechanisms by which surfactants stabilize foams. Surfactants adsorb at the gas-liquid interface, establishing hydrogen bonds with water molecules while simultaneously retarding the structural relaxation of water-water hydrogen bonds within the hydration layer. This phenomenon can impede drainage during the surface tension drainage phase. Surfactants that readily form hydrogen bonds with water are more likely to adsorb at the gas-liquid interface, thereby enhancing the foam stability. The presence of robust hydrogen bonds and the frequent reconstruction of these bonds contribute to the establishment of a stable hydrogen bond network, which can reinforce the gas-liquid film and potentially augment its elasticity, enabling it to better withstand external perturbations. Although the Marangoni effect typically promotes bubble coalescence, a stable hydrogen bond network may mitigate this process.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08131","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the foams generated by three surfactants: sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium lauryl polyoxyethylene ether sulfate (AES). By analyzing the hydrogen bond at the gas-liquid interface, the research provides novel insights into the mechanisms by which surfactants stabilize foams. Surfactants adsorb at the gas-liquid interface, establishing hydrogen bonds with water molecules while simultaneously retarding the structural relaxation of water-water hydrogen bonds within the hydration layer. This phenomenon can impede drainage during the surface tension drainage phase. Surfactants that readily form hydrogen bonds with water are more likely to adsorb at the gas-liquid interface, thereby enhancing the foam stability. The presence of robust hydrogen bonds and the frequent reconstruction of these bonds contribute to the establishment of a stable hydrogen bond network, which can reinforce the gas-liquid film and potentially augment its elasticity, enabling it to better withstand external perturbations. Although the Marangoni effect typically promotes bubble coalescence, a stable hydrogen bond network may mitigate this process.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.