ENACT: End-to-End Analysis of Visium High Definition (HD) Data.

Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas
{"title":"ENACT: End-to-End Analysis of Visium High Definition (HD) Data.","authors":"Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas","doi":"10.1093/bioinformatics/btaf094","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.</p><p><strong>Results: </strong>We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalable to samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.</p><p><strong>Availability and implementation: </strong>ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data are available at https://zenodo.org/records/14748859.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.

Results: We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalable to samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.

Availability and implementation: ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data are available at https://zenodo.org/records/14748859.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENACT:Visium 高清(HD)数据端到端分析。
动机:空间转录组学(ST)可以在组织病理学样本的空间背景下研究基因表达。迄今为止,一个限制因素是基于测序的ST产品的分辨率。Visium高清晰度(HD)技术的引入为细胞分辨率ST研究打开了大门。然而,在准确地将转录本映射到细胞和基于转录本数据分配细胞类型的能力方面仍然存在挑战。结果:我们开发了ENACT,这是一个独立的管道,集成了先进的细胞分割和Visium HD转录组学数据,以推断整个组织切片的细胞类型。我们的产品线结合了新颖的bin-to-cell分配方法,提高了单细胞转录物估计的准确性。经过多种合成和真实数据集的验证,我们的方法既可扩展到具有数十万个细胞的样本,又有效,为空间分辨转录组学分析提供了强大的解决方案。可用性和实现:ENACT源代码可从https://github.com/Sanofi-Public/enact-pipeline获得。实验数据可在https://zenodo.org/records/14748859.Supplementary信息上获得;补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ViMOP: A user-friendly and field-applicable pipeline for untargeted viral genome nanopore sequencing. Efficient algorithms for simulating sequences along a phylogenetic tree. Genome- and Peak-Informed Two-Stage Framework for scATAC-seq Cell Type Identification. Integrating curation into scientific publishing to train AI models. isoSeQL: comparing long-read isoforms across multiple datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1