ENACT: End-to-end Analysis of Visium High Definition (HD) Data.

Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas
{"title":"ENACT: End-to-end Analysis of Visium High Definition (HD) Data.","authors":"Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas","doi":"10.1093/bioinformatics/btaf094","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.</p><p><strong>Results: </strong>We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalableto samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.</p><p><strong>Availability and implementation: </strong>ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data is available at https://zenodo.org/records/14748859.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.

Results: We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalableto samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.

Availability and implementation: ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data is available at https://zenodo.org/records/14748859.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENACT:Visium 高清(HD)数据端到端分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ENACT: End-to-end Analysis of Visium High Definition (HD) Data. PathoSeq-QC: a decision support bioinformatics workflow for robust genomic surveillance. PROLONG: Penalized Regression for Outcome guided Longitudinal Omics analysis with Network and Group constraints. Predicting circRNA-disease associations with shared units and multi-channel attention mechanisms. Vcfgl: A flexible genotype likelihood simulator for VCF/BCF files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1