Toward Origami-Inspired In Vitro Cardiac Tissue Models

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-02-20 DOI:10.1021/acsbiomaterials.4c0159410.1021/acsbiomaterials.4c01594
Antonio Sileo, Federica Montrone, Adelin Rouchon, Donata Trueb, Jasmin Selvi, Moritz Schmid, Julian Graef, Fabian Züger, Gianpaolo Serino, Diana Massai, Nunzia Di Maggio, Gabriela Melo Rodriguez, Joachim Köser, Joachim Schoelkopf, Andrea Banfi, Anna Marsano* and Maurizio Gullo, 
{"title":"Toward Origami-Inspired In Vitro Cardiac Tissue Models","authors":"Antonio Sileo,&nbsp;Federica Montrone,&nbsp;Adelin Rouchon,&nbsp;Donata Trueb,&nbsp;Jasmin Selvi,&nbsp;Moritz Schmid,&nbsp;Julian Graef,&nbsp;Fabian Züger,&nbsp;Gianpaolo Serino,&nbsp;Diana Massai,&nbsp;Nunzia Di Maggio,&nbsp;Gabriela Melo Rodriguez,&nbsp;Joachim Köser,&nbsp;Joachim Schoelkopf,&nbsp;Andrea Banfi,&nbsp;Anna Marsano* and Maurizio Gullo,&nbsp;","doi":"10.1021/acsbiomaterials.4c0159410.1021/acsbiomaterials.4c01594","DOIUrl":null,"url":null,"abstract":"<p >The advancement of <i>in vitro</i> engineered cardiac tissue-based patches is paramount for providing viable solutions for restoring cardiac function through <i>in vivo</i> implantation. Numerous techniques described in the literature aim to provide diverse mechanical and topographical cues simultaneously, fostering enhanced <i>in vitro</i> cardiac maturation and functionality. Among these, cellulose paper-based scaffolds have gained attention owing to their inherent benefits, such as biocompatibility and ease of chemical and physical modification. This study introduces a novel approach of utilizing customized paper-based scaffolds as cell culture substrates, facilitating both the formation and manipulation of cell constructs while promoting mechanical contraction. Here, we investigated two methodologies to foster mechanical contractions of paper-based constructs: the incorporation of micropatterns on paper to dictate cell orientation and macropattern created by the origami-folded paper. Both approaches provide mechanical support and foster cardiac functionality. However, while micropatterning does not significantly improve the functional parameters, a macropattern created by origami folding proves to be essential in facilitating contraction of the paper-based cardiac constructs. Furthermore, we provide proof of principle for the combination with a layer of physiologically differentiated microvascular networks. This approach holds great promise for the development of structurally organized contractile cardiac tissues with the possibility of creating multistrata of cardiac and vascular layers to promote <i>in vivo</i> cell survival and function beyond what is typically achieved in conventional cell culture.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 3","pages":"1583–1597 1583–1597"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01594","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of in vitro engineered cardiac tissue-based patches is paramount for providing viable solutions for restoring cardiac function through in vivo implantation. Numerous techniques described in the literature aim to provide diverse mechanical and topographical cues simultaneously, fostering enhanced in vitro cardiac maturation and functionality. Among these, cellulose paper-based scaffolds have gained attention owing to their inherent benefits, such as biocompatibility and ease of chemical and physical modification. This study introduces a novel approach of utilizing customized paper-based scaffolds as cell culture substrates, facilitating both the formation and manipulation of cell constructs while promoting mechanical contraction. Here, we investigated two methodologies to foster mechanical contractions of paper-based constructs: the incorporation of micropatterns on paper to dictate cell orientation and macropattern created by the origami-folded paper. Both approaches provide mechanical support and foster cardiac functionality. However, while micropatterning does not significantly improve the functional parameters, a macropattern created by origami folding proves to be essential in facilitating contraction of the paper-based cardiac constructs. Furthermore, we provide proof of principle for the combination with a layer of physiologically differentiated microvascular networks. This approach holds great promise for the development of structurally organized contractile cardiac tissues with the possibility of creating multistrata of cardiac and vascular layers to promote in vivo cell survival and function beyond what is typically achieved in conventional cell culture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Gadolinium Functionalized Carbon Dot Complexes for Dual-Modal Imaging: Structure, Performance, and Applications. Inflammatory Microenvironment-Modulated Conductive Hydrogel Promotes Vascularized Bone Regeneration in Infected Bone Defects. Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy. In Vivo and In Vitro Study of a Multifunctional SF/nHAp Corrosion-Resistant Bio-Coating Prepared on MAO Magnesium Alloy via Ultrasonic Spraying. Recent Advances and Challenges for Biological Materials in Micro/Nanocarrier Synthesis for Bone Infection and Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1