{"title":"Comprehensive analysis of hydrazone Schiff bases: Synthesis, structural characterization, DFT studies, molecular docking insights and bioactivity assessment","authors":"Ashish Kumar Tiwari , Vaishnu SK , Mohankumar Narayanan , Mohit Garg , Vishnu Varma Manoharan , Jothi L. Nallasivam , V.M. Biju","doi":"10.1016/j.molstruc.2025.141905","DOIUrl":null,"url":null,"abstract":"<div><div>The four new hydrazone Schiff bases have been synthesized in absolute ethanol at the reflux of 78 °C. These hydrazones are named as: (E)-1-(2,4-dinitrophenyl)-2-(2-ethoxy benzylidene) hydrazine(<strong>2-EDNPH</strong>) (<strong>L<sub>1</sub></strong>), (E)-1-(2,4-dinitrophenyl)-2-(4-ethoxy benzylidene) hydrazine(<strong>4-EDNPH</strong>) (<strong>L<sub>2</sub></strong>), (E)-3-chloro-2-((2-(2,4-dinitrophenyl) hydrazinylidene) methyl) phenol(<strong>3-Cl-2-OH-DNPH</strong>) (<strong>L<sub>3</sub></strong>) and (E)-1-(2,4-dinitrophenyl)-2-(thiophen-3-ylmethylene) hydrazine (<strong>3-Thiophene Carbaldehyde-DNPH</strong>) (<strong>L<sub>4</sub></strong>). Spectroscopic and physicochemical techniques were employed to validate these compound's structure, including <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra, UV–Vis, IR, and melting point. A solubility test is also carried out on all the Schiff bases, indicating that all four ligands are soluble in THF and DMF. The thermal breakdown behavior of all ligands is being examined by thermogravimetric analysis (TGA/DTG) at a heating rate of 10 °C min<sup>−1</sup> under a nitrogen environment. The crystalline structure of L<sub>1</sub> was also investigated in an <strong>XtaLAB AFC12 (RINC): Kappa single</strong> diffractometer, which included unit cell computation and data collecting. The radioactive photon was created with MoKα (λ = 0.7107Å). In addition, density functional theory (DFT) is utilized to compute the optimized molecular structures, stability, reactivity, and numerous chemical characteristics of the synthesized ligands. The in-silico prediction of ADME features revealed that synthesized compounds gain notable drug-like characteristics. Also, molecular docking was enforced to predict the inhibitory action of the β-ketoacyl acyl carrier (KAS1) protein of E. Coli (PDB Id: <span><span>6TZF</span><svg><path></path></svg></span>) on the examined hydrazones. Finally, all ligands were to assess the anti-bacterial properties against gram-positive (<em>B. subtilis</em> and MRSA) and gram-negative (<em>P. mirabilis and E. coli</em>) infections; only L<sub>1</sub> and L<sub>2</sub> showed activity against these pathogens.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1335 ","pages":"Article 141905"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286025005915","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The four new hydrazone Schiff bases have been synthesized in absolute ethanol at the reflux of 78 °C. These hydrazones are named as: (E)-1-(2,4-dinitrophenyl)-2-(2-ethoxy benzylidene) hydrazine(2-EDNPH) (L1), (E)-1-(2,4-dinitrophenyl)-2-(4-ethoxy benzylidene) hydrazine(4-EDNPH) (L2), (E)-3-chloro-2-((2-(2,4-dinitrophenyl) hydrazinylidene) methyl) phenol(3-Cl-2-OH-DNPH) (L3) and (E)-1-(2,4-dinitrophenyl)-2-(thiophen-3-ylmethylene) hydrazine (3-Thiophene Carbaldehyde-DNPH) (L4). Spectroscopic and physicochemical techniques were employed to validate these compound's structure, including 1H NMR, 13C NMR spectra, UV–Vis, IR, and melting point. A solubility test is also carried out on all the Schiff bases, indicating that all four ligands are soluble in THF and DMF. The thermal breakdown behavior of all ligands is being examined by thermogravimetric analysis (TGA/DTG) at a heating rate of 10 °C min−1 under a nitrogen environment. The crystalline structure of L1 was also investigated in an XtaLAB AFC12 (RINC): Kappa single diffractometer, which included unit cell computation and data collecting. The radioactive photon was created with MoKα (λ = 0.7107Å). In addition, density functional theory (DFT) is utilized to compute the optimized molecular structures, stability, reactivity, and numerous chemical characteristics of the synthesized ligands. The in-silico prediction of ADME features revealed that synthesized compounds gain notable drug-like characteristics. Also, molecular docking was enforced to predict the inhibitory action of the β-ketoacyl acyl carrier (KAS1) protein of E. Coli (PDB Id: 6TZF) on the examined hydrazones. Finally, all ligands were to assess the anti-bacterial properties against gram-positive (B. subtilis and MRSA) and gram-negative (P. mirabilis and E. coli) infections; only L1 and L2 showed activity against these pathogens.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.