Responses of gut microbiota to altitude in a small mammal on Qinghai-Tibetan Plateau

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology D-Genomics & Proteomics Pub Date : 2025-03-06 DOI:10.1016/j.cbd.2025.101467
Yan Zhang , Yihong Wang , Baohui Yao , Zhaoxian Tan , Xinyang Chen , Rong Wang , Weihong Ji , Jiapeng Qu
{"title":"Responses of gut microbiota to altitude in a small mammal on Qinghai-Tibetan Plateau","authors":"Yan Zhang ,&nbsp;Yihong Wang ,&nbsp;Baohui Yao ,&nbsp;Zhaoxian Tan ,&nbsp;Xinyang Chen ,&nbsp;Rong Wang ,&nbsp;Weihong Ji ,&nbsp;Jiapeng Qu","doi":"10.1016/j.cbd.2025.101467","DOIUrl":null,"url":null,"abstract":"<div><div>Altitude of the plateau may affect the composition and functional diversity of animal gut microbiota. However, the specific effects of altitude on the composition, community structure, and function of the host's gut microbiota, as well as how these effects, through interactions between microbial metabolic products (e.g., SCFAs) and microbial diversity, support host adaptation to high-altitude environments, remain unclear. This study investigates the variations of gut microbial community structure and function in plateau pikas (<em>Ochotona curzoniae</em>) along altitude on Qinghai-Tibetan Plateau. Cecum contents were analyzed using 16S rRNA sequencing and short-chain fatty acid (SCFA) content analyses to explore the structure, function and metabolic characteristics gut microbiota across different altitudes. As altitude increases, pikas' gut microbiota diversity significantly decreased, SCFA levels did not significantly change, while both diversity and complexity of the microbiota co-occurrence networks significantly decreased. The microbial community shifted toward better suited to high-altitude environments, as significantly increased in Bacteroidetes abundance but decreased in Firmicutes abundance. The microbial community assembly process became more deterministic, and KEGG analysis revealed the upregulation of metabolic, genetic information processing, and organismal system pathways. These results indicated that the gut microbiota diversity and complexity decreased in plateau pikas with increasing altitude, along with the upregulation of key metabolic pathways, as well as the stability of SCFA levels which reflecting balanced supply-demand relationships, contribute to adaptation of high-altitude environments. These findings reveal the substantial impact of altitude on the gut microbiota of a small mammal inhabiting the plateau, providing new insights into its adaptation mechanisms to high-altitude environments.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"55 ","pages":"Article 101467"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Altitude of the plateau may affect the composition and functional diversity of animal gut microbiota. However, the specific effects of altitude on the composition, community structure, and function of the host's gut microbiota, as well as how these effects, through interactions between microbial metabolic products (e.g., SCFAs) and microbial diversity, support host adaptation to high-altitude environments, remain unclear. This study investigates the variations of gut microbial community structure and function in plateau pikas (Ochotona curzoniae) along altitude on Qinghai-Tibetan Plateau. Cecum contents were analyzed using 16S rRNA sequencing and short-chain fatty acid (SCFA) content analyses to explore the structure, function and metabolic characteristics gut microbiota across different altitudes. As altitude increases, pikas' gut microbiota diversity significantly decreased, SCFA levels did not significantly change, while both diversity and complexity of the microbiota co-occurrence networks significantly decreased. The microbial community shifted toward better suited to high-altitude environments, as significantly increased in Bacteroidetes abundance but decreased in Firmicutes abundance. The microbial community assembly process became more deterministic, and KEGG analysis revealed the upregulation of metabolic, genetic information processing, and organismal system pathways. These results indicated that the gut microbiota diversity and complexity decreased in plateau pikas with increasing altitude, along with the upregulation of key metabolic pathways, as well as the stability of SCFA levels which reflecting balanced supply-demand relationships, contribute to adaptation of high-altitude environments. These findings reveal the substantial impact of altitude on the gut microbiota of a small mammal inhabiting the plateau, providing new insights into its adaptation mechanisms to high-altitude environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
期刊最新文献
Editorial Board Responses of gut microbiota to altitude in a small mammal on Qinghai-Tibetan Plateau α-Ketoglutarate modulates the mechanisms of toxicity in crucian carp kidneys chronically exposed to NaHCO3: Metabolomics insights The influence of sex on the intestinal flora of Procypris mera Insights into sexual dimorphisms: Analysis of lipid metabolites, biochemical markers, and sex steroid profiling in serum of captive Chinese Sturgeon (Acipenser sinesis) at early stage of gonadal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1