Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2025-03-06 DOI:10.1016/j.jii.2025.100807
Lukas Bahr , Christoph Wehner , Judith Wewerka , José Bittencourt , Ute Schmid , Rüdiger Daub
{"title":"Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis","authors":"Lukas Bahr ,&nbsp;Christoph Wehner ,&nbsp;Judith Wewerka ,&nbsp;José Bittencourt ,&nbsp;Ute Schmid ,&nbsp;Rüdiger Daub","doi":"10.1016/j.jii.2025.100807","DOIUrl":null,"url":null,"abstract":"<div><div>Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"45 ","pages":"Article 100807"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000317","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Managing lifecycle of product information with an ontology-based knowledge framework Data center multidimensional management strategy based on descending neighborhood DBSCAN algorithm in unsupervised learning An integrated weighted multi-criteria decision making method using Z-number and its application in failure modes and effect analysis Systematic review of mobile robots applications in smart cities with future directions A hybrid constraint programming and cross-entropy approach for balancing U-Shaped disassembly line with flexible workstations and spatial constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1