Lukas Bahr , Christoph Wehner , Judith Wewerka , José Bittencourt , Ute Schmid , Rüdiger Daub
{"title":"Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis","authors":"Lukas Bahr , Christoph Wehner , Judith Wewerka , José Bittencourt , Ute Schmid , Rüdiger Daub","doi":"10.1016/j.jii.2025.100807","DOIUrl":null,"url":null,"abstract":"<div><div>Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"45 ","pages":"Article 100807"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000317","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.