Impaired folate metabolism reshapes auditory response profiles and impairs loudness perception in MTHFR-deficient mice

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-03-07 DOI:10.1016/j.nbd.2025.106863
Hila Sapir , Ghattas Bisharat , Hava Golan , Jennifer Resnik
{"title":"Impaired folate metabolism reshapes auditory response profiles and impairs loudness perception in MTHFR-deficient mice","authors":"Hila Sapir ,&nbsp;Ghattas Bisharat ,&nbsp;Hava Golan ,&nbsp;Jennifer Resnik","doi":"10.1016/j.nbd.2025.106863","DOIUrl":null,"url":null,"abstract":"<div><div>Folate metabolism, regulated by methylenetetrahydrofolate reductase (MTHFR), is crucial for proper neurodevelopment, and disruptions—whether due to genetic polymorphisms or maternal nutritional deficits—have been linked to cognitive and behavioral impairments. Notably, MTHFR-deficient mouse models display altered social interaction and auditory communication, hinting at disruptions in auditory-related circuits and prompting the question of whether impaired folate metabolism might also affect sound processing and perception. Here, using two-photon calcium imaging, we show that MTHFR deficiency increases both spontaneous and sound-evoked activity in the auditory cortex and significantly shifts neuronal response profiles, which in turn elevates perceived loudness while reducing sound-level discrimination. These findings underscore the potential role of compromised folate metabolism in driving the atypical auditory responses and may have broader relevance for understanding sensory dysfunction in various neurodevelopmental conditions.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"208 ","pages":"Article 106863"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125000798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Folate metabolism, regulated by methylenetetrahydrofolate reductase (MTHFR), is crucial for proper neurodevelopment, and disruptions—whether due to genetic polymorphisms or maternal nutritional deficits—have been linked to cognitive and behavioral impairments. Notably, MTHFR-deficient mouse models display altered social interaction and auditory communication, hinting at disruptions in auditory-related circuits and prompting the question of whether impaired folate metabolism might also affect sound processing and perception. Here, using two-photon calcium imaging, we show that MTHFR deficiency increases both spontaneous and sound-evoked activity in the auditory cortex and significantly shifts neuronal response profiles, which in turn elevates perceived loudness while reducing sound-level discrimination. These findings underscore the potential role of compromised folate metabolism in driving the atypical auditory responses and may have broader relevance for understanding sensory dysfunction in various neurodevelopmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Impaired folate metabolism reshapes auditory response profiles and impairs loudness perception in MTHFR-deficient mice Mitochondria at the crossroads: Quality control mechanisms in neuronal senescence and neurodegeneration 2024 VCP International Conference: Exploring multi-disciplinary approaches from basic science of valosin containing protein, an AAA+ ATPase protein, to the therapeutic advancement for VCP-associated multisystem proteinopathy Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Potentiation of the M1 muscarinic acetylcholine receptor normalizes neuronal activation patterns and improves apnea severity in Mecp2+/− mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1