Exploring the structural, electronic, mechanical and optical behavior of two phases of topological superconductor candidate Au2Pb by first-principles calculations
Maliha Tabassum, Suptajoy Barua, Md. Thouhidur Rashid, Ishtiaque M. Syed
{"title":"Exploring the structural, electronic, mechanical and optical behavior of two phases of topological superconductor candidate Au2Pb by first-principles calculations","authors":"Maliha Tabassum, Suptajoy Barua, Md. Thouhidur Rashid, Ishtiaque M. Syed","doi":"10.1016/j.physb.2025.417112","DOIUrl":null,"url":null,"abstract":"<div><div>A vital initial step towards comprehending quantum materials with topologically non-trivial order parameters is to study superconductivity in Dirac materials. In this work, we thoroughly analyzed the elastic, electronic, and optical characteristics of two phases (cubic Laves phase and orthorhombic phase) of topological superconductor candidate Au<sub>2</sub>Pb by using density functional theory. High-temperature cubic Au<sub>2</sub>Pb has an electronic band structure with a Dirac cone that gaps as it transforms structurally into a low-temperature superconducting orthorhombic phase. Au<sub>2</sub>Pb is a mechanically stable, ductile, highly machinable, and very soft material according to the analyses of calculated elastic properties. An extremely low Debye temperature value indicates that Au<sub>2</sub>Pb is a very soft substance and supports the idea that its bonding strengths are weak. The material also shows anisotropic optical characteristics in the orthorhombic phase. Au<sub>2</sub>Pb has extremely dispersive bands that extend above the Fermi level, which exhibits its metallic characteristics. Au<sub>2</sub>Pb has high, nonselective reflectivity over a broad spectral spectrum. The substance has enormous potential to be used as a powerful UV reflector. Applications based on optoelectronic devices can make use of all these optical properties.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417112"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002297","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A vital initial step towards comprehending quantum materials with topologically non-trivial order parameters is to study superconductivity in Dirac materials. In this work, we thoroughly analyzed the elastic, electronic, and optical characteristics of two phases (cubic Laves phase and orthorhombic phase) of topological superconductor candidate Au2Pb by using density functional theory. High-temperature cubic Au2Pb has an electronic band structure with a Dirac cone that gaps as it transforms structurally into a low-temperature superconducting orthorhombic phase. Au2Pb is a mechanically stable, ductile, highly machinable, and very soft material according to the analyses of calculated elastic properties. An extremely low Debye temperature value indicates that Au2Pb is a very soft substance and supports the idea that its bonding strengths are weak. The material also shows anisotropic optical characteristics in the orthorhombic phase. Au2Pb has extremely dispersive bands that extend above the Fermi level, which exhibits its metallic characteristics. Au2Pb has high, nonselective reflectivity over a broad spectral spectrum. The substance has enormous potential to be used as a powerful UV reflector. Applications based on optoelectronic devices can make use of all these optical properties.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces