On estimation and order selection for multivariate extremes via clustering

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2025-02-28 DOI:10.1016/j.jmva.2025.105426
Shiyuan Deng , He Tang , Shuyang Bai
{"title":"On estimation and order selection for multivariate extremes via clustering","authors":"Shiyuan Deng ,&nbsp;He Tang ,&nbsp;Shuyang Bai","doi":"10.1016/j.jmva.2025.105426","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the estimation of multivariate extreme models with a discrete spectral measure using spherical clustering techniques. The primary contribution involves devising a method for selecting the order, that is, the number of clusters. The method consistently identifies the true order, i.e., the number of spectral atoms, and enjoys intuitive implementation in practice. Specifically, we introduce an extra penalty term to the well-known simplified average silhouette width, which penalizes small cluster sizes and small dissimilarities between cluster centers. Consequently, we provide a consistent method for determining the order of a max-linear factor model, where a typical information-based approach is not viable. Our second contribution is a large-deviation-type analysis for estimating the discrete spectral measure through clustering methods, which serves as an assessment of the convergence quality of clustering-based estimation for multivariate extremes. Additionally, as a third contribution, we discuss how estimating the discrete measure can lead to parameter estimations of heavy-tailed factor models. We also present simulations and real-data studies that demonstrate order selection and factor model estimation.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105426"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the estimation of multivariate extreme models with a discrete spectral measure using spherical clustering techniques. The primary contribution involves devising a method for selecting the order, that is, the number of clusters. The method consistently identifies the true order, i.e., the number of spectral atoms, and enjoys intuitive implementation in practice. Specifically, we introduce an extra penalty term to the well-known simplified average silhouette width, which penalizes small cluster sizes and small dissimilarities between cluster centers. Consequently, we provide a consistent method for determining the order of a max-linear factor model, where a typical information-based approach is not viable. Our second contribution is a large-deviation-type analysis for estimating the discrete spectral measure through clustering methods, which serves as an assessment of the convergence quality of clustering-based estimation for multivariate extremes. Additionally, as a third contribution, we discuss how estimating the discrete measure can lead to parameter estimations of heavy-tailed factor models. We also present simulations and real-data studies that demonstrate order selection and factor model estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于通过聚类进行多元极值估计和阶次选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Minimaxity under the half-Cauchy prior On estimation and order selection for multivariate extremes via clustering Set-valued expectiles for ordered data analysis Ledoit-Wolf linear shrinkage with unknown mean Markov switching multiple-equation tensor regressions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1