{"title":"Developments on the “Machine Learning as a Service for High Energy Physics” Framework and Related Cloud Native Solution","authors":"Luca Giommi;Daniele Spiga;Mattia Paladino;Valentin Kuznetsov;Daniele Bonacorsi","doi":"10.1109/TCC.2025.3535793","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) techniques have been successfully used in many areas of High Energy Physics (HEP) and will play a significant role in the success of upcoming High-Luminosity Large Hadron Collider (HL-LHC) program at CERN. An unprecedented amount of data at the exascale will be collected by LHC experiments in the next decade, and this effort will require novel approaches to train and use ML models. The work presented in this paper is focused on the developments of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTPs calls. These pipelines are executed by using MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. In particular, new features implemented on the framework will be presented as well as updates on the architecture of an existing prototype of the MLaaS4HEP cloud service will be provided. This solution includes two OAuth2 proxy servers as authentication/authorization layer, a MLaaS4HEP server, an XRootD proxy server for enabling access to remote ROOT data, and the TensorFlow as a Service (TFaaS) service in charge of the inference phase.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"429-440"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10869642/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine Learning (ML) techniques have been successfully used in many areas of High Energy Physics (HEP) and will play a significant role in the success of upcoming High-Luminosity Large Hadron Collider (HL-LHC) program at CERN. An unprecedented amount of data at the exascale will be collected by LHC experiments in the next decade, and this effort will require novel approaches to train and use ML models. The work presented in this paper is focused on the developments of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTPs calls. These pipelines are executed by using MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. In particular, new features implemented on the framework will be presented as well as updates on the architecture of an existing prototype of the MLaaS4HEP cloud service will be provided. This solution includes two OAuth2 proxy servers as authentication/authorization layer, a MLaaS4HEP server, an XRootD proxy server for enabling access to remote ROOT data, and the TensorFlow as a Service (TFaaS) service in charge of the inference phase.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.