Mo2C-derived molybdenum oxycarbides afford controllable oxidation of anilines to azobenzenes and azoxybenzenes†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-01-14 DOI:10.1039/d4gc06281g
Zhe Wang , Yimei Chen , Zhouyang Long , Yunfei Wang , Mingming Fan , Pingbo Zhang , Yan Leng
{"title":"Mo2C-derived molybdenum oxycarbides afford controllable oxidation of anilines to azobenzenes and azoxybenzenes†","authors":"Zhe Wang ,&nbsp;Yimei Chen ,&nbsp;Zhouyang Long ,&nbsp;Yunfei Wang ,&nbsp;Mingming Fan ,&nbsp;Pingbo Zhang ,&nbsp;Yan Leng","doi":"10.1039/d4gc06281g","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic synthesis of aromatic azo compounds <em>via</em> oxidative coupling of anilines still faces great challenges due to the difficulty in controlling product selectivity. In this study, we have pioneered the application of Mo<sub>2</sub>C as a pre-catalyst for the selective oxidation of aniline using H<sub>2</sub>O<sub>2</sub> to produce azobenzenes and azoxybenzenes. Both experimental and theoretical studies reveal that H<sub>2</sub>O<sub>2</sub> induces the formation of Mo oxycarbides (MoC<sub><em>x</em></sub>O<sub><em>y</em></sub>) on the surface of Mo<sub>2</sub>C during the reaction, which subsequently activates H<sub>2</sub>O<sub>2</sub> to generate active sites (Mo⋯O) essential for the oxidative coupling of anilines. Furthermore, the kinetics of the critical conversion from Ph-NH<sub>2</sub> to Ph-NHOH over MoC<sub><em>x</em></sub>O<sub><em>y</em></sub> can be adjusted by modulating the solvent, thereby enabling controlled product selectivity between azobenzenes and azoxybenzenes. This work elucidates the structural evolution of Mo<sub>2</sub>C to MoC<sub><em>x</em></sub>O<sub><em>y</em></sub> in a H<sub>2</sub>O<sub>2</sub> system and its catalytic oxidation capabilities, potentially paving the way for broader applications of MoC<sub><em>x</em></sub>O<sub><em>y</em></sub> in various oxidation reactions.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 11","pages":"Pages 3091-3098"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225001293","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic synthesis of aromatic azo compounds via oxidative coupling of anilines still faces great challenges due to the difficulty in controlling product selectivity. In this study, we have pioneered the application of Mo2C as a pre-catalyst for the selective oxidation of aniline using H2O2 to produce azobenzenes and azoxybenzenes. Both experimental and theoretical studies reveal that H2O2 induces the formation of Mo oxycarbides (MoCxOy) on the surface of Mo2C during the reaction, which subsequently activates H2O2 to generate active sites (Mo⋯O) essential for the oxidative coupling of anilines. Furthermore, the kinetics of the critical conversion from Ph-NH2 to Ph-NHOH over MoCxOy can be adjusted by modulating the solvent, thereby enabling controlled product selectivity between azobenzenes and azoxybenzenes. This work elucidates the structural evolution of Mo2C to MoCxOy in a H2O2 system and its catalytic oxidation capabilities, potentially paving the way for broader applications of MoCxOy in various oxidation reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mo2c衍生的氧化钼可使苯胺可控氧化生成偶氮苯和偶氮氧苯†
苯胺氧化偶联催化合成芳香偶氮化合物由于难以控制产物的选择性而面临很大的挑战。在本研究中,我们率先将Mo2C作为预催化剂应用于H2O2选择性氧化苯胺生产偶氮苯和偶氮氧苯。实验和理论研究都表明,在反应过程中,H2O2诱导在Mo2C表面形成Mo氧化碳化物(MoCxOy),其随后激活H2O2生成苯胺氧化偶联所必需的活性位点(Mo⋯O)。此外,通过调节溶剂可以调节MoCxOy上从Ph-NH2到Ph-NHOH的临界转化动力学,从而实现偶氮苯和偶氮氧苯之间的可控产物选择性。这项工作阐明了在H2O2体系中Mo2C到MoCxOy的结构演变及其催化氧化能力,为MoCxOy在各种氧化反应中的广泛应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Eutectogels as versatile platforms: design strategies and application prospects Correction: Cesium chemistry enables microporous carbon nanofibers with biomimetic ion transport channels for zinc-ion capacitors Catalysis for electrocatalytic C–N coupling towards amino acid synthesis Epoxide isosorbate oleic acid as a sustainable PVC plasticizer: synthesis, performance and cytocompatibility Accelerated biodegradation of polyurethanes through embedded cutinases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1