Toward industrial C8 production: oxygen intrusion drives renewable n-caprylate production from ethanol and acetate via intermediate metabolite production†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-01-14 DOI:10.1039/d5gc00411j
Kurt Gemeinhardt , Byoung Seung Jeon , Jean Nepomuscene Ntihuga , Han Wang , Caroline Schlaiß , Timo N. Lucas , Irina Bessarab , Nicolas Nalpas , Nanqing Zhou , Joseph G. Usack , Daniel H. Huson , Rohan B. H. Williams , Boris Maček , Ludmilla Aristilde , Largus T. Angenent
{"title":"Toward industrial C8 production: oxygen intrusion drives renewable n-caprylate production from ethanol and acetate via intermediate metabolite production†","authors":"Kurt Gemeinhardt ,&nbsp;Byoung Seung Jeon ,&nbsp;Jean Nepomuscene Ntihuga ,&nbsp;Han Wang ,&nbsp;Caroline Schlaiß ,&nbsp;Timo N. Lucas ,&nbsp;Irina Bessarab ,&nbsp;Nicolas Nalpas ,&nbsp;Nanqing Zhou ,&nbsp;Joseph G. Usack ,&nbsp;Daniel H. Huson ,&nbsp;Rohan B. H. Williams ,&nbsp;Boris Maček ,&nbsp;Ludmilla Aristilde ,&nbsp;Largus T. Angenent","doi":"10.1039/d5gc00411j","DOIUrl":null,"url":null,"abstract":"<div><div>Previous bioreactor studies achieved high volumetric <em>n</em>-caprylate (<em>i.e.</em>, <em>n</em>-octanoate) production rates and selectivities from ethanol and acetate with chain-elongating microbiomes. However, the metabolic pathways from the substrates to <em>n</em>-caprylate synthesis were unclear. We operated two <em>n</em>-caprylate-producing upflow bioreactors with a synthetic medium to study the underlying metabolic pathways. The operating period exceeded 2.5 years, with a peak volumetric <em>n</em>-caprylate production rate of 190 ± 8.4 mmol C L<sup>−1</sup> d<sup>−1</sup> (0.14 g L<sup>−1</sup> h<sup>−1</sup>). We identified oxygen availability as a critical performance parameter, facilitating intermediate metabolite production from ethanol. Bottle experiments in the presence and absence of oxygen with <sup>13</sup>C-labeled ethanol suggest acetyl-coenzyme A-based derived production of <em>n</em>-butyrate (<em>i.e.</em>, <em>n</em>-butanoate), <em>n</em>-caproate (<em>i.e.</em>, <em>n</em>-hexanoate), and <em>n</em>-caprylate. Here, we postulate a trophic hierarchy within the bioreactor microbiomes based on metagenomics, metaproteomics, and metabolomics data, as well as experiments with a <em>Clostridium kluyveri</em> isolate. First, the aerobic bacterium <em>Pseudoclavibacter caeni</em> and the facultative anaerobic fungus <em>Cyberlindnera jadinii</em> converted part of the ethanol pool into the intermediate metabolites succinate, lactate, and pyroglutamate. Second, the strict anaerobic <em>C. kluyveri</em> elongated acetate with the residual ethanol to <em>n</em>-butyrate. Third, <em>Caproicibacter fermentans</em> and <em>Oscillibacter valericigenes</em> elongated <em>n</em>-butyrate with the intermediate metabolites to <em>n</em>-caproate and then to <em>n</em>-caprylate. Among the carbon chain-elongating pathways of carboxylates, the tricarboxylic acid cycle and the reverse β-oxidation pathways showed a positive correlation with <em>n</em>-caprylate production. The results of this study inspire the realization of a chain-elongating production platform with separately controlled aerobic and anaerobic stages to produce <em>n</em>-caprylate renewably as an attractive chemical from ethanol and acetate as substrates.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 11","pages":"Pages 2931-2949"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S146392622500127X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous bioreactor studies achieved high volumetric n-caprylate (i.e., n-octanoate) production rates and selectivities from ethanol and acetate with chain-elongating microbiomes. However, the metabolic pathways from the substrates to n-caprylate synthesis were unclear. We operated two n-caprylate-producing upflow bioreactors with a synthetic medium to study the underlying metabolic pathways. The operating period exceeded 2.5 years, with a peak volumetric n-caprylate production rate of 190 ± 8.4 mmol C L−1 d−1 (0.14 g L−1 h−1). We identified oxygen availability as a critical performance parameter, facilitating intermediate metabolite production from ethanol. Bottle experiments in the presence and absence of oxygen with 13C-labeled ethanol suggest acetyl-coenzyme A-based derived production of n-butyrate (i.e., n-butanoate), n-caproate (i.e., n-hexanoate), and n-caprylate. Here, we postulate a trophic hierarchy within the bioreactor microbiomes based on metagenomics, metaproteomics, and metabolomics data, as well as experiments with a Clostridium kluyveri isolate. First, the aerobic bacterium Pseudoclavibacter caeni and the facultative anaerobic fungus Cyberlindnera jadinii converted part of the ethanol pool into the intermediate metabolites succinate, lactate, and pyroglutamate. Second, the strict anaerobic C. kluyveri elongated acetate with the residual ethanol to n-butyrate. Third, Caproicibacter fermentans and Oscillibacter valericigenes elongated n-butyrate with the intermediate metabolites to n-caproate and then to n-caprylate. Among the carbon chain-elongating pathways of carboxylates, the tricarboxylic acid cycle and the reverse β-oxidation pathways showed a positive correlation with n-caprylate production. The results of this study inspire the realization of a chain-elongating production platform with separately controlled aerobic and anaerobic stages to produce n-caprylate renewably as an attractive chemical from ethanol and acetate as substrates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业C8生产:氧气入侵通过中间代谢物生产驱动乙醇和醋酸盐生产可再生正辛酸盐
先前的生物反应器研究实现了高容量正辛酸酯(即正辛酸酯)的生产速率和选择性,从乙醇和乙酸与链延长的微生物组。然而,从底物到正辛酸合成的代谢途径尚不清楚。我们用合成培养基操作了两个生产n-辛酸的上流式生物反应器来研究潜在的代谢途径。运行周期超过2.5年,最大容量正辛酸产量为190±8.4 mmol C L−1 d−1 (0.14 g L−1 h−1)。我们确定氧气可用性是一个关键的性能参数,促进乙醇的中间代谢物生产。用13c标记的乙醇在有氧和无氧条件下进行的瓶子实验表明,基于乙酰辅酶的衍生产品可以生产正丁酸盐(即正丁酸盐)、正己酸盐(即正己酸盐)和正辛酸盐。在这里,我们基于宏基因组学、宏蛋白质组学和代谢组学数据,以及克卢韦梭菌分离物的实验,假设了生物反应器微生物组中的营养等级。首先,需氧细菌caeni Pseudoclavibacter caeni和兼性厌氧真菌Cyberlindnera jadinii将部分乙醇池转化为中间代谢物琥珀酸盐、乳酸盐和焦谷氨酸盐。其次,严格厌氧的C. kluyveri将乙酸与残留的乙醇延长为正丁酸盐。第三,发酵自生菌和缬草振荡菌通过中间代谢产物将正丁酸盐延长为正己酸盐,然后再延长为正辛酸盐。羧酸盐的碳链延长途径中,三羧酸循环和反向β-氧化途径与正辛酸盐的生成呈正相关。本研究的结果启发了一个链延长生产平台的实现,该平台具有单独控制的好氧和厌氧阶段,以乙醇和乙酸为底物可再生地生产正辛酸盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Eutectogels as versatile platforms: design strategies and application prospects Correction: Cesium chemistry enables microporous carbon nanofibers with biomimetic ion transport channels for zinc-ion capacitors Catalysis for electrocatalytic C–N coupling towards amino acid synthesis Epoxide isosorbate oleic acid as a sustainable PVC plasticizer: synthesis, performance and cytocompatibility Accelerated biodegradation of polyurethanes through embedded cutinases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1