Quantum-assisted support vector regression

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-03-10 DOI:10.1007/s11128-025-04674-0
Archismita Dalal, Mohsen Bagherimehrab, Barry C. Sanders
{"title":"Quantum-assisted support vector regression","authors":"Archismita Dalal,&nbsp;Mohsen Bagherimehrab,&nbsp;Barry C. Sanders","doi":"10.1007/s11128-025-04674-0","DOIUrl":null,"url":null,"abstract":"<div><p>A popular machine-learning model for regression tasks, including stock-market prediction, weather forecasting and real-estate pricing, is the classical support vector regression (SVR). However, a practically realisable quantum SVR remains to be formulated. We devise annealing-based algorithms, namely simulated and quantum-classical hybrid, for training two SVR models and compare their empirical performances against the SVR implementation of Python’s scikit-learn package for facial-landmark detection (FLD), a particular use case for SVR. Our method is to derive a quadratic-unconstrained-binary formulation for the optimisation problem used for training a SVR model and solve this problem using annealing. Using D-Wave’s hybrid solver, we construct a quantum-assisted SVR model, thereby demonstrating a slight advantage over classical models regarding FLD accuracy. Furthermore, we observe that annealing-based SVR models predict landmarks with lower variances compared to the SVR models trained by gradient-based methods. Our work is a proof-of-concept example for applying quantum-assisted SVR to a supervised-learning task with a small training dataset.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04674-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04674-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A popular machine-learning model for regression tasks, including stock-market prediction, weather forecasting and real-estate pricing, is the classical support vector regression (SVR). However, a practically realisable quantum SVR remains to be formulated. We devise annealing-based algorithms, namely simulated and quantum-classical hybrid, for training two SVR models and compare their empirical performances against the SVR implementation of Python’s scikit-learn package for facial-landmark detection (FLD), a particular use case for SVR. Our method is to derive a quadratic-unconstrained-binary formulation for the optimisation problem used for training a SVR model and solve this problem using annealing. Using D-Wave’s hybrid solver, we construct a quantum-assisted SVR model, thereby demonstrating a slight advantage over classical models regarding FLD accuracy. Furthermore, we observe that annealing-based SVR models predict landmarks with lower variances compared to the SVR models trained by gradient-based methods. Our work is a proof-of-concept example for applying quantum-assisted SVR to a supervised-learning task with a small training dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子辅助支持向量回归
用于回归任务(包括股市预测、天气预报和房地产定价)的一个流行的机器学习模型是经典的支持向量回归(SVR)。然而,一个实际可实现的量子SVR仍有待制定。我们设计了基于退火的算法,即模拟算法和量子经典混合算法,用于训练两个SVR模型,并将它们的经验性能与Python的scikit-learn包用于面部地标检测(FLD)的SVR实现进行比较,这是SVR的一个特殊用例。我们的方法是推导用于训练SVR模型的优化问题的二次-无约束-二元公式,并使用退火方法解决该问题。使用D-Wave的混合求解器,我们构建了一个量子辅助SVR模型,从而证明了在FLD精度方面比经典模型有轻微的优势。此外,我们观察到,与基于梯度方法训练的支持向量回归模型相比,基于退火的支持向量回归模型预测的地标方差更低。我们的工作是将量子辅助SVR应用于具有小型训练数据集的监督学习任务的概念验证示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
N qubits can be entangled in two different ways Photonic spin Hall shift manipulation using the Kerr nonlinearity effect Galois duals of 1-generator quasi-twisted codes and their applications in quantum codes construction Probability and fidelity of teleportation in a two-mode continuous-variable cluster state via a finite-resolution measurement device Non-standard quantum algebra \(\mathcal {U}_h (\mathfrak {sl}(2, \mathbb {R}))\) and h-Dicke states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1