A comprehensive update on the use of molecular topology applications for anti-infective drug discovery.

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Expert Opinion on Drug Discovery Pub Date : 2025-03-11 DOI:10.1080/17460441.2025.2477625
Beatriz Suay-García, Joan Climent, María Teresa Pérez-Gracia, Antonio Falcó
{"title":"A comprehensive update on the use of molecular topology applications for anti-infective drug discovery.","authors":"Beatriz Suay-García, Joan Climent, María Teresa Pérez-Gracia, Antonio Falcó","doi":"10.1080/17460441.2025.2477625","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rapid emergence of infectious diseases poses a significant threat to global economies and public health. To combat this, it is crucial to develop effective treatments. One essential tool in drug design is molecular topology, which uses topological indices to build QSAR models. This mathematical framework describes chemical compound structures, facilitating easy characterization.</p><p><strong>Areas covered: </strong>Classical ligand-based molecular topology has a series of limitations that can be overcome by shifting focus into structure-based approaches. Recent developments have emerged, focusing on target protein topology rather than drug molecules. Techniques like TDA, ESPH, LWPH, and molecular GDL are among the new methods being explored. This review is based on literature searches utilizing PubMed, Web of Science, and Google Scholar to identify articles published between the year 2000 and 2024.</p><p><strong>Expert opinion: </strong>The authors believe that it is time to move away from traditional molecular topology and toward innovative approaches and technologies. Shifting focus from ligand-based to structure-based molecular topology, combined with new databases and algorithms, can aid in fighting drug-resistant microorganisms. This shift opens a broader chemical space for developing new anti-infective drugs, ultimately improving public health outcomes.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-10"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2477625","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The rapid emergence of infectious diseases poses a significant threat to global economies and public health. To combat this, it is crucial to develop effective treatments. One essential tool in drug design is molecular topology, which uses topological indices to build QSAR models. This mathematical framework describes chemical compound structures, facilitating easy characterization.

Areas covered: Classical ligand-based molecular topology has a series of limitations that can be overcome by shifting focus into structure-based approaches. Recent developments have emerged, focusing on target protein topology rather than drug molecules. Techniques like TDA, ESPH, LWPH, and molecular GDL are among the new methods being explored. This review is based on literature searches utilizing PubMed, Web of Science, and Google Scholar to identify articles published between the year 2000 and 2024.

Expert opinion: The authors believe that it is time to move away from traditional molecular topology and toward innovative approaches and technologies. Shifting focus from ligand-based to structure-based molecular topology, combined with new databases and algorithms, can aid in fighting drug-resistant microorganisms. This shift opens a broader chemical space for developing new anti-infective drugs, ultimately improving public health outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
期刊最新文献
Innovative strategies for the discovery of new drugs against androgenetic alopecia. A comprehensive update on the use of molecular topology applications for anti-infective drug discovery. Drug repurposing in amyotrophic lateral sclerosis (ALS). The application of snake venom in anticancer drug discovery: an overview of the latest developments. Animal models of chronic obstructive pulmonary disease and their role in drug discovery and development: a critical review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1