Approximation and Generalization Capacities of Parametrized Quantum Circuits for Functions in Sobolev Spaces

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-03-10 DOI:10.22331/q-2025-03-10-1658
Alberto Manzano, David Dechant, Jordi Tura, Vedran Dunjko
{"title":"Approximation and Generalization Capacities of Parametrized Quantum Circuits for Functions in Sobolev Spaces","authors":"Alberto Manzano, David Dechant, Jordi Tura, Vedran Dunjko","doi":"10.22331/q-2025-03-10-1658","DOIUrl":null,"url":null,"abstract":"Parametrized quantum circuits (PQC) are quantum circuits which consist of both fixed and parametrized gates. In recent approaches to quantum machine learning (QML), PQCs are essentially ubiquitous and play the role analogous to classical neural networks. They are used to learn various types of data, with an underlying expectation that if the PQC is made sufficiently deep, and the data plentiful, the generalization error will vanish, and the model will capture the essential features of the distribution. While there exist results proving the approximability of square-integrable functions by PQCs under the $L^2$ distance, the approximation for other function spaces and under other distances has been less explored. In this work we show that PQCs can approximate the space of continuous functions, $p$-integrable functions and the $H^k$ Sobolev spaces under specific distances. Moreover, we develop generalization bounds that connect different function spaces and distances. These results provide a theoretical basis for different applications of PQCs, for example for solving differential equations. Furthermore, they provide us with new insight on the role of the data normalization in PQCs and of loss functions which better suit the specific needs of the users.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-10-1658","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Parametrized quantum circuits (PQC) are quantum circuits which consist of both fixed and parametrized gates. In recent approaches to quantum machine learning (QML), PQCs are essentially ubiquitous and play the role analogous to classical neural networks. They are used to learn various types of data, with an underlying expectation that if the PQC is made sufficiently deep, and the data plentiful, the generalization error will vanish, and the model will capture the essential features of the distribution. While there exist results proving the approximability of square-integrable functions by PQCs under the $L^2$ distance, the approximation for other function spaces and under other distances has been less explored. In this work we show that PQCs can approximate the space of continuous functions, $p$-integrable functions and the $H^k$ Sobolev spaces under specific distances. Moreover, we develop generalization bounds that connect different function spaces and distances. These results provide a theoretical basis for different applications of PQCs, for example for solving differential equations. Furthermore, they provide us with new insight on the role of the data normalization in PQCs and of loss functions which better suit the specific needs of the users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Quantum key distribution rates from non-symmetric conic optimization Approximation and Generalization Capacities of Parametrized Quantum Circuits for Functions in Sobolev Spaces Quantum memory assisted observable estimation Ultrastrong coupling, nonselective measurement and quantum Zeno dynamics Seedless extractors for device-independent quantum cryptography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1