Accelerating the inference of string generation-based chemical reaction models for industrial applications

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-03-10 DOI:10.1186/s13321-025-00974-w
Mikhail Andronov, Natalia Andronova, Michael Wand, Jürgen Schmidhuber, Djork-Arné Clevert
{"title":"Accelerating the inference of string generation-based chemical reaction models for industrial applications","authors":"Mikhail Andronov,&nbsp;Natalia Andronova,&nbsp;Michael Wand,&nbsp;Jürgen Schmidhuber,&nbsp;Djork-Arné Clevert","doi":"10.1186/s13321-025-00974-w","DOIUrl":null,"url":null,"abstract":"<div><p>Transformer-based, template-free SMILES-to-SMILES translation models for reaction prediction and single-step retrosynthesis are of interest to computer-aided synthesis planning systems, as they offer state-of-the-art accuracy. However, their slow inference speed limits their practical utility in such applications. To address this challenge, we propose speculative decoding with a simple chemically specific drafting strategy and apply it to the Molecular Transformer, an encoder-decoder transformer for conditional SMILES generation. Our approach achieves over 3X faster inference in reaction product prediction and single-step retrosynthesis with no loss in accuracy, increasing the potential of the transformer as the backbone of synthesis planning systems. To accelerate the simultaneous generation of multiple precursor SMILES for a given query SMILES in single-step retrosynthesis, we introduce Speculative Beam Search, a novel algorithm tackling the challenge of beam search acceleration with speculative decoding. Our methods aim to improve transformer-based models’ scalability and industrial applicability in synthesis planning.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00974-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00974-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer-based, template-free SMILES-to-SMILES translation models for reaction prediction and single-step retrosynthesis are of interest to computer-aided synthesis planning systems, as they offer state-of-the-art accuracy. However, their slow inference speed limits their practical utility in such applications. To address this challenge, we propose speculative decoding with a simple chemically specific drafting strategy and apply it to the Molecular Transformer, an encoder-decoder transformer for conditional SMILES generation. Our approach achieves over 3X faster inference in reaction product prediction and single-step retrosynthesis with no loss in accuracy, increasing the potential of the transformer as the backbone of synthesis planning systems. To accelerate the simultaneous generation of multiple precursor SMILES for a given query SMILES in single-step retrosynthesis, we introduce Speculative Beam Search, a novel algorithm tackling the challenge of beam search acceleration with speculative decoding. Our methods aim to improve transformer-based models’ scalability and industrial applicability in synthesis planning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于反应预测和单步逆合成的基于变压器、无模板的 SMILES 到 SMILES 翻译模型对计算机辅助合成规划系统很有意义,因为它们具有最先进的准确性。然而,它们缓慢的推理速度限制了它们在此类应用中的实际效用。为了应对这一挑战,我们提出了一种具有简单化学特异性起草策略的推测解码方法,并将其应用于分子变换器(一种用于条件 SMILES 生成的编码器-解码器变换器)。我们的方法使反应产物预测和单步逆合成的推理速度提高了 3 倍以上,而且准确性没有降低,从而提高了变压器作为合成规划系统骨干的潜力。为了在单步逆合成中加快为给定查询 SMILES 同时生成多个前体 SMILES 的速度,我们引入了投机波束搜索(Speculative Beam Search),这是一种新颖的算法,利用投机解码解决了波束搜索加速的难题。我们的方法旨在提高基于变压器的模型在合成规划中的可扩展性和工业应用性。我们首次应用推测解码来加速用于反应建模的 SMILES 到 SMILES 转换的变压器神经网络推理。我们为 SMILES 的推测性解码提出了一种化学特异性简单绘图策略。我们还介绍了 "投机波束搜索"--第一种利用投机解码加速变压器波束搜索解码的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
Accelerating the inference of string generation-based chemical reaction models for industrial applications Fifteen years of ChEMBL and its role in cheminformatics and drug discovery CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability Achieving well-informed decision-making in drug discovery: a comprehensive calibration study using neural network-based structure-activity models GNINA 1.3: the next increment in molecular docking with deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1