Evolution, Speciation, and Distribution of Mo Oxides in MFI-Type Zeolites

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-03-10 DOI:10.1021/acs.jpcc.4c07185
Fateme Molajafari, Emanuele J. Hiennadi, Sheima J. Khatib, Joshua D. Howe
{"title":"Evolution, Speciation, and Distribution of Mo Oxides in MFI-Type Zeolites","authors":"Fateme Molajafari, Emanuele J. Hiennadi, Sheima J. Khatib, Joshua D. Howe","doi":"10.1021/acs.jpcc.4c07185","DOIUrl":null,"url":null,"abstract":"Mo oxide-impregnated H-ZSM-5, the most extensively studied catalyst for methane dehydroaromatization (MDA), is typically prepared by impregnating Mo precursors into H-ZSM-5 zeolite through physical mixing or incipient wetness impregnation. To understand the transformation of Mo oxide/(H−)ZSM-5 during catalyst preparation and the anchoring stages of MDA, we employ density functional theory (DFT) calculations to investigate changes in the electronic structure, composition, and location of Mo oxide in H-ZSM-5. Using the climbing image nudged elastic band (CI-NEB) method, we explore the anchoring and formation processes of various MoO<sub><i>x</i></sub> motifs within H-ZSM-5 and provide mechanistic insights into the interconversion between these structural motifs. We also develop a statistical model informed by the kinetics of Mo oxide anchoring and formation, predicting the distribution of Mo oxide catalyst precursors as a function of the synthesis method, zeolite acidity, and Mo loading. Additionally, by employing temperature-programmed calcination under oxidative conditions, we monitor the transformation of Mo oxides by measuring the water released during anchoring. These experimental results are correlated with the modeling predictions, providing insights into the molecular processes during catalyst preparation and how we can rationally control the design of Mo oxides in MFI-type zeolites.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"68 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07185","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mo oxide-impregnated H-ZSM-5, the most extensively studied catalyst for methane dehydroaromatization (MDA), is typically prepared by impregnating Mo precursors into H-ZSM-5 zeolite through physical mixing or incipient wetness impregnation. To understand the transformation of Mo oxide/(H−)ZSM-5 during catalyst preparation and the anchoring stages of MDA, we employ density functional theory (DFT) calculations to investigate changes in the electronic structure, composition, and location of Mo oxide in H-ZSM-5. Using the climbing image nudged elastic band (CI-NEB) method, we explore the anchoring and formation processes of various MoOx motifs within H-ZSM-5 and provide mechanistic insights into the interconversion between these structural motifs. We also develop a statistical model informed by the kinetics of Mo oxide anchoring and formation, predicting the distribution of Mo oxide catalyst precursors as a function of the synthesis method, zeolite acidity, and Mo loading. Additionally, by employing temperature-programmed calcination under oxidative conditions, we monitor the transformation of Mo oxides by measuring the water released during anchoring. These experimental results are correlated with the modeling predictions, providing insights into the molecular processes during catalyst preparation and how we can rationally control the design of Mo oxides in MFI-type zeolites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Evaluation of Theoretical Models for Determining Effective Thermal Conductivity and Interfacial Thermal Resistance of Carbon Nanotube Polydimethylsiloxane Nanocomposites An Adsorption Isotherm That Includes the Interactions between Adsorbates Evolution, Speciation, and Distribution of Mo Oxides in MFI-Type Zeolites Evaluation of Spinel-Type Compounds as Potential Intercalation Hosts for Magnesium Batteries Water Nucleation via Transient Bonds to Oxygen-Functionalized Graphite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1