{"title":"Advanced association theory for monoethylene glycol: Thermodynamic perturbation theory, Monte Carlo simulation, and equation of state parametrization","authors":"Mahmood Abdi, Hassan Hassanzadeh","doi":"10.1039/d4cp04621h","DOIUrl":null,"url":null,"abstract":"Thermodynamic perturbation theory (TPT) is a breakthrough in developing an equation of state for systems containing hydrogen bonding. In this work, we derive the association contribution to Helmholtz's free energy for spherical particles composed of four patchy sites and verified it by performing Monte Carlo (MC) simulations. The theory suggests that the site placement significantly impacts the system's phase behavior at constant temperature and density. We apply our theory to correlate and predict the experimental phase behavior data of pure monoethylene glycol (MEG) and its binary mixtures with non-associating molecules (including methane, ethane, propane, and hydrogen) and compare the theory's performance with the case where the association contribution to the system's pressure is based on first-order TPT (TPT1). Our theory outperforms TPT1 in terms of error and predictive capabilities for the physical properties of pure MEG. In the binary mixture application, TPT1 presents a better predictive ability for the mole fraction of the non-associating molecule in the glycol-rich liquid than our theory.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"56 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04621h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodynamic perturbation theory (TPT) is a breakthrough in developing an equation of state for systems containing hydrogen bonding. In this work, we derive the association contribution to Helmholtz's free energy for spherical particles composed of four patchy sites and verified it by performing Monte Carlo (MC) simulations. The theory suggests that the site placement significantly impacts the system's phase behavior at constant temperature and density. We apply our theory to correlate and predict the experimental phase behavior data of pure monoethylene glycol (MEG) and its binary mixtures with non-associating molecules (including methane, ethane, propane, and hydrogen) and compare the theory's performance with the case where the association contribution to the system's pressure is based on first-order TPT (TPT1). Our theory outperforms TPT1 in terms of error and predictive capabilities for the physical properties of pure MEG. In the binary mixture application, TPT1 presents a better predictive ability for the mole fraction of the non-associating molecule in the glycol-rich liquid than our theory.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.