Enhancing 3D Human Pose Estimation Amidst Severe Occlusion With Dual Transformer Fusion

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-25 DOI:10.1109/TMM.2024.3521755
Mehwish Ghafoor;Arif Mahmood;Muhammad Bilal
{"title":"Enhancing 3D Human Pose Estimation Amidst Severe Occlusion With Dual Transformer Fusion","authors":"Mehwish Ghafoor;Arif Mahmood;Muhammad Bilal","doi":"10.1109/TMM.2024.3521755","DOIUrl":null,"url":null,"abstract":"In the field of 3D Human Pose Estimation from monocular videos, the presence of diverse occlusion types presents a formidable challenge. Prior research has made progress by harnessing spatial and temporal cues to infer 3D poses from 2D joint observations. This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation, even in the presence of severe occlusions. Confronting the issue of occlusion-induced missing joint data, we propose a temporal interpolation-based occlusion guidance mechanism. To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views. Each intermediate-view undergoes spatial refinement through a self-refinement schema. Subsequently, these intermediate-views are fused to yield the final 3D human pose estimation. The entire system is end-to-end trainable. Through extensive experiments conducted on the Human3.6 M and MPI-INF-3DHP datasets, our method's performance is rigorously evaluated. Notably, our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1617-1624"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814681/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of 3D Human Pose Estimation from monocular videos, the presence of diverse occlusion types presents a formidable challenge. Prior research has made progress by harnessing spatial and temporal cues to infer 3D poses from 2D joint observations. This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation, even in the presence of severe occlusions. Confronting the issue of occlusion-induced missing joint data, we propose a temporal interpolation-based occlusion guidance mechanism. To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views. Each intermediate-view undergoes spatial refinement through a self-refinement schema. Subsequently, these intermediate-views are fused to yield the final 3D human pose estimation. The entire system is end-to-end trainable. Through extensive experiments conducted on the Human3.6 M and MPI-INF-3DHP datasets, our method's performance is rigorously evaluated. Notably, our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用双变压器融合增强严重遮挡下三维人体姿态估计
在单目视频的三维人体姿态估计领域,不同遮挡类型的存在是一个巨大的挑战。先前的研究通过利用空间和时间线索从2D联合观察中推断3D姿势取得了进展。本文介绍了一种双变压器融合(DTF)算法,这是一种即使在存在严重遮挡的情况下也能获得整体三维姿态估计的新方法。针对遮挡导致的关节数据缺失问题,我们提出了一种基于时间插值的遮挡引导机制。为了实现精确的3D人体姿态估计,我们的方法利用了创新的DTF架构,该架构首先生成一对中间视图。每个中间视图都通过自细化模式进行空间细化。随后,这些中间视图被融合以产生最终的3D人体姿态估计。整个系统是端到端可训练的。通过在Human3.6 M和MPI-INF-3DHP数据集上进行的大量实验,我们的方法的性能得到了严格的评估。值得注意的是,我们的方法在这两个数据集上都优于现有的最先进的方法,产生了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Screen Detection from Egocentric Image Streams Leveraging Multi-View Vision Language Model. HMS2Net: Heterogeneous Multimodal State Space Network via CLIP for Dynamic Scene Classification in Livestreaming 2025 Reviewers List Long-Tailed Continual Learning for Visual Food Recognition SSPD: Spatial-Spectral Prior Decoupling Model for Spectral Snapshot Compressive Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1