Enhancing cycling stability of Li-rich Mn-based cathode materials via cyano functional additives†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2025-01-25 DOI:10.1039/D4QM01070A
Dongwei Zhou, Zhanlin Yang, Shihao Wang, Guiyang Gao, Jie Zhu, Chengkun Zhang, Saichao Li, Baisheng Sa, Jie Lin, Dong-Liang Peng and Qingshui Xie
{"title":"Enhancing cycling stability of Li-rich Mn-based cathode materials via cyano functional additives†","authors":"Dongwei Zhou, Zhanlin Yang, Shihao Wang, Guiyang Gao, Jie Zhu, Chengkun Zhang, Saichao Li, Baisheng Sa, Jie Lin, Dong-Liang Peng and Qingshui Xie","doi":"10.1039/D4QM01070A","DOIUrl":null,"url":null,"abstract":"<p >Li-rich Mn-based cathode materials (LRMs) have garnered considerable interest for their high specific capacity. Nevertheless, the elevated operating voltage window presents a great hurdle to the high-voltage tolerance of the conventional electrolytes, and the induced issues such as rapid capacity and structure degradation also further impede their industrial application. In this regard, an efficient method to alleviate this problem is proposed <em>via</em> a cyano functional additive. By introducing the trimethylsilyl cyanide (TMS) additive into a carbonate electrolyte to construct a complex with TM–CN bonds on the cathode surface and form a low-impedance and durable cathode/electrolyte interphase (CEI), both electrolyte decomposition and cathode degradation are suppressed effectively. Moreover, harmful substances are also removed through the reaction between TMS and HF to purify the electrolyte. Therefore, the electrochemical performance of the LRM cathode is enhanced with a discharge capacity of 224 mA h g<small><sup>−1</sup></small> after 200 cycles at 1C. A high discharge capacity of 227 mA h g<small><sup>−1</sup></small> is also achieved after 50 cycles at 0.5C under a high mass loading of 13 mg cm<small><sup>−2</sup></small>. This work presents a new path to develop high-voltage electrolytes for LRM cathodes.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 6","pages":" 965-975"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm01070a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01070a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-rich Mn-based cathode materials (LRMs) have garnered considerable interest for their high specific capacity. Nevertheless, the elevated operating voltage window presents a great hurdle to the high-voltage tolerance of the conventional electrolytes, and the induced issues such as rapid capacity and structure degradation also further impede their industrial application. In this regard, an efficient method to alleviate this problem is proposed via a cyano functional additive. By introducing the trimethylsilyl cyanide (TMS) additive into a carbonate electrolyte to construct a complex with TM–CN bonds on the cathode surface and form a low-impedance and durable cathode/electrolyte interphase (CEI), both electrolyte decomposition and cathode degradation are suppressed effectively. Moreover, harmful substances are also removed through the reaction between TMS and HF to purify the electrolyte. Therefore, the electrochemical performance of the LRM cathode is enhanced with a discharge capacity of 224 mA h g−1 after 200 cycles at 1C. A high discharge capacity of 227 mA h g−1 is also achieved after 50 cycles at 0.5C under a high mass loading of 13 mg cm−2. This work presents a new path to develop high-voltage electrolytes for LRM cathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用氰基功能添加剂增强富锂锰基正极材料的循环稳定性
富锂锰基正极材料(lrm)因其高比容量而受到广泛关注。然而,较高的工作电压窗口对传统电解质的高电压耐受性提出了很大的障碍,而容量和结构的快速退化等诱发问题也进一步阻碍了它们的工业应用。在这方面,提出了一种有效的方法,即通过氰基功能添加剂来缓解这一问题。将三甲基硅氰(TMS)添加剂引入碳酸盐电解质中,在阴极表面与TM-CN键形成配合物,形成低阻抗、持久的阴极/电解质界面(CEI),有效抑制了电解质分解和阴极降解。通过TMS与HF的反应,去除电解液中的有害物质。因此,在1C下循环200次后,LRM阴极的放电容量为224 mA h g−1,其电化学性能得到了提高。在0.5℃下,在13 mg cm−2的高质量负载下,经过50次循环后,也实现了227 mA h g−1的高放电容量。本研究为开发LRM阴极用高压电解质提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Recent advances in room-temperature phosphorescence metal–organic frameworks: structural design, property modulation, and emerging applications Water-triggered, thermally reversible sulfur quantum dots with red-blue luminescence switching for dynamic anti-counterfeiting A feather duster-like CoFe-LDH/CF composite with parallel array structure as an efficient water splitting electrocatalyst Supercritical CO2-modulated defect dynamic equilibrium for magnetic-proton dual-functional CaZrO3 Spatiotemporal identification of therapeutic markers via dual-targeted SERS bioprobes for assessing breast cancer progression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1