Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-03-10 DOI:10.1021/acschembio.4c00878
Cole Emanuelson, Yuta Naro, Olivia Shade, Melinda Liu, Sagar D Khare, Alexander Deiters
{"title":"Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus.","authors":"Cole Emanuelson, Yuta Naro, Olivia Shade, Melinda Liu, Sagar D Khare, Alexander Deiters","doi":"10.1021/acschembio.4c00878","DOIUrl":null,"url":null,"abstract":"<p><p>Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00878","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Biochemical Characterization of Disease-Associated Variants of Human Ornithine Transcarbamylase. Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus. Advances in Optogenetics and Thermogenetics for Control of Non-Neuronal Cells and Tissues in Biomedical Research. Structural and Mechanistic Characterization of the Flavin-Dependent Monooxygenase and Oxidase Involved in Sorbicillinoid Biosynthesis. Characterization of RufT Thioesterase Domain Reveals Insights into Rufomycin Cyclization and the Biosynthetic Origin of Rufomyazine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1