Dušan Goranovič, Branko Jenko, Barbara Ramšak, Ajda Podgoršek Berke, Leon Bedrač, Jaka Horvat, Martin Šala, Damjan Makuc, Guilhermina M Carriche, Luana Silva, Aleksandra Lopez Krol, Alen Pšeničnik, María Beatriz Durán Alonso, Martina Avbelj, Stojan Stavber, Janez Plavec, Tim Sparwasser, Rolf Müller, Gregor Kosec, Štefan Fujs, Hrvoje Petković
{"title":"Efficient and Selective Biosynthesis of a Precursor-Directed FK506 Analogue: Paving the Way for Click Chemistry.","authors":"Dušan Goranovič, Branko Jenko, Barbara Ramšak, Ajda Podgoršek Berke, Leon Bedrač, Jaka Horvat, Martin Šala, Damjan Makuc, Guilhermina M Carriche, Luana Silva, Aleksandra Lopez Krol, Alen Pšeničnik, María Beatriz Durán Alonso, Martina Avbelj, Stojan Stavber, Janez Plavec, Tim Sparwasser, Rolf Müller, Gregor Kosec, Štefan Fujs, Hrvoje Petković","doi":"10.1021/acs.jnatprod.4c00394","DOIUrl":null,"url":null,"abstract":"<p><p>The medically important immunosuppressant FK506 is a structurally complex macrolactone biosynthesized by a combined polyketide synthase and a nonribosomal peptide synthetase enzyme complex. Its acyltransferase domain 4 (AT4) selects an unusual extender unit, resulting in an allyl moiety on carbon 21 of the macrolactone backbone. Based on the AT4 domain, chemobiosynthetic processes have been developed that enable the introduction of diverse moieties at the carbon 21 position. However, the novel moieties that were introduced into the polyketide backbone are chemically inert. Reported here is a novel and efficient chemobiosynthetic approach that ensures high titer of an FK506 analogue containing a propargyl moiety. The novel FK506 analogue displays lower immunosuppression activity than FK506 with significantly reduced cytotoxicity. More importantly, the propargyl moiety contains a terminal alkyl group, which makes click chemistry reactions possible; this approach may potentially be translated to other medically important drugs of polyketide origin.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The medically important immunosuppressant FK506 is a structurally complex macrolactone biosynthesized by a combined polyketide synthase and a nonribosomal peptide synthetase enzyme complex. Its acyltransferase domain 4 (AT4) selects an unusual extender unit, resulting in an allyl moiety on carbon 21 of the macrolactone backbone. Based on the AT4 domain, chemobiosynthetic processes have been developed that enable the introduction of diverse moieties at the carbon 21 position. However, the novel moieties that were introduced into the polyketide backbone are chemically inert. Reported here is a novel and efficient chemobiosynthetic approach that ensures high titer of an FK506 analogue containing a propargyl moiety. The novel FK506 analogue displays lower immunosuppression activity than FK506 with significantly reduced cytotoxicity. More importantly, the propargyl moiety contains a terminal alkyl group, which makes click chemistry reactions possible; this approach may potentially be translated to other medically important drugs of polyketide origin.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.