Chimeric Ad5/35 oncolytic adenovirus overcome preexisting neutralizing antibodies and enhance tumor targeting efficiency.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cancer gene therapy Pub Date : 2025-03-08 DOI:10.1038/s41417-025-00884-x
Zhoutong Dai, Yao Si, Shengfeng Xiong, Ying Li, Jiaqi Ye, Qinglei Gao, Ding Ma, Xin Jin, Fei Li
{"title":"Chimeric Ad5/35 oncolytic adenovirus overcome preexisting neutralizing antibodies and enhance tumor targeting efficiency.","authors":"Zhoutong Dai, Yao Si, Shengfeng Xiong, Ying Li, Jiaqi Ye, Qinglei Gao, Ding Ma, Xin Jin, Fei Li","doi":"10.1038/s41417-025-00884-x","DOIUrl":null,"url":null,"abstract":"<p><p>KD01, a third-generation conditionally replicating adenovirus serotype 5 developed by our team, has approved by the China Center for Drug Evaluation (CDE) for Phase I clinical trials (NCT06552598). However, 60% seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based oncolytic viruses. To address this issue, we developed oAd5/35-HF, a fourth-generation oncolytic adenovirus vector designed to enhance infection efficiency and evade pre-existing neutralizing antibodies (NABs). To achieve this, we introduced targeted capsid modifications, replacing hexon hypervariable regions (HVRs) 1 and 5 with those from adenovirus serotype 35 (Ad35), along with alterations to the fiber region. These combined modifications significantly improved infection efficiency, maintained high viral titers, and enabled the virus to resist NABs. This is the first report of replacing both the Ad5 hexon HVRs and fiber regions with those from Ad35 in an oncolytic adenovirus, resulting in potent antitumor activity across multiple cancer types, even in the presence of high NAB levels. The oAd5/35-HF backbone provides a versatile platform for developing new chimera oncolytic adenovirus and adenovirus vector-based vaccine.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00884-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KD01, a third-generation conditionally replicating adenovirus serotype 5 developed by our team, has approved by the China Center for Drug Evaluation (CDE) for Phase I clinical trials (NCT06552598). However, 60% seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based oncolytic viruses. To address this issue, we developed oAd5/35-HF, a fourth-generation oncolytic adenovirus vector designed to enhance infection efficiency and evade pre-existing neutralizing antibodies (NABs). To achieve this, we introduced targeted capsid modifications, replacing hexon hypervariable regions (HVRs) 1 and 5 with those from adenovirus serotype 35 (Ad35), along with alterations to the fiber region. These combined modifications significantly improved infection efficiency, maintained high viral titers, and enabled the virus to resist NABs. This is the first report of replacing both the Ad5 hexon HVRs and fiber regions with those from Ad35 in an oncolytic adenovirus, resulting in potent antitumor activity across multiple cancer types, even in the presence of high NAB levels. The oAd5/35-HF backbone provides a versatile platform for developing new chimera oncolytic adenovirus and adenovirus vector-based vaccine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
期刊最新文献
Chimeric Ad5/35 oncolytic adenovirus overcome preexisting neutralizing antibodies and enhance tumor targeting efficiency. Emerging roles of prohibitins in cancer: an update. Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1