Application of separation and configuration identification of the four tetrabenazine stereoisomers in determining their pharmacokinetics.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2025-03-08 DOI:10.1007/s00216-025-05813-3
Jianxin Li, Haoran Li, Kai Liu, Alan Kueichieh Chang, Ying Pei, Wenbao Liu, Jiao Ai, Nan Wang, Yuhui Liu, Zhen Jiang, Lijiang Chen, Xiao Liang
{"title":"Application of separation and configuration identification of the four tetrabenazine stereoisomers in determining their pharmacokinetics.","authors":"Jianxin Li, Haoran Li, Kai Liu, Alan Kueichieh Chang, Ying Pei, Wenbao Liu, Jiao Ai, Nan Wang, Yuhui Liu, Zhen Jiang, Lijiang Chen, Xiao Liang","doi":"10.1007/s00216-025-05813-3","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrabenazine (TBZ) is used in the treatment of psychiatric diseases, and it works by inhibiting vesicular monoamine transporter 2 (VMAT2) protein to exert a curative effect. TBZ is administered as the mixture of stereoisomers in clinical treatment. TBZ has two chiral centers, and therefore, it has four stereoisomers, and this greatly makes it difficult to separate the stereoisomers and to identify their configurations because of their high susceptibility to structural transformation. This study aims to develop a method to resolve TBZ into four individual peaks, corresponding to the four stereoisomers (1-4). Based on the different binding affinities between TBZ stereoisomers and VMAT2, the UF-UHPLC-QQQ/MS method is used to determine the absolute configuration of TBZ stereoisomers 1 and 2. Molecular docking simulations are used to verify the accuracy of UF-UHPLC-QQQ/MS. The configurations of stable stereoisomers 3 and 4 were confirmed by electron circular dichroism (ECD). The established analytical method was applied to determine the pharmacokinetics of each TBZ stereoisomer in vivo. It was found that the stereoisomer 1 (3R,11bR-TBZ) showed better bioavailability and more excretion than the other stereoisomers. The results of tissue distribution experiments indicated a much higher content of 3R,11bR-TBZ in the brain, suggesting that it may better penetrate the blood-brain barrier and exert its therapeutic effects there. The paper addresses the complex problem of separating and identifying stereoisomers with multiple chiral centers, which is a significant challenge in pharmaceutical chemistry. And this work could provide a basis for the preparation of TBZ stereoisomers and a reference for the method of separating drugs with multichiral centers and identifying unstable drugs based on their configurations.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05813-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tetrabenazine (TBZ) is used in the treatment of psychiatric diseases, and it works by inhibiting vesicular monoamine transporter 2 (VMAT2) protein to exert a curative effect. TBZ is administered as the mixture of stereoisomers in clinical treatment. TBZ has two chiral centers, and therefore, it has four stereoisomers, and this greatly makes it difficult to separate the stereoisomers and to identify their configurations because of their high susceptibility to structural transformation. This study aims to develop a method to resolve TBZ into four individual peaks, corresponding to the four stereoisomers (1-4). Based on the different binding affinities between TBZ stereoisomers and VMAT2, the UF-UHPLC-QQQ/MS method is used to determine the absolute configuration of TBZ stereoisomers 1 and 2. Molecular docking simulations are used to verify the accuracy of UF-UHPLC-QQQ/MS. The configurations of stable stereoisomers 3 and 4 were confirmed by electron circular dichroism (ECD). The established analytical method was applied to determine the pharmacokinetics of each TBZ stereoisomer in vivo. It was found that the stereoisomer 1 (3R,11bR-TBZ) showed better bioavailability and more excretion than the other stereoisomers. The results of tissue distribution experiments indicated a much higher content of 3R,11bR-TBZ in the brain, suggesting that it may better penetrate the blood-brain barrier and exert its therapeutic effects there. The paper addresses the complex problem of separating and identifying stereoisomers with multiple chiral centers, which is a significant challenge in pharmaceutical chemistry. And this work could provide a basis for the preparation of TBZ stereoisomers and a reference for the method of separating drugs with multichiral centers and identifying unstable drugs based on their configurations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Towards quality-assured measurements of microplastics in soil using fluorescence microscopy. A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence. Application of separation and configuration identification of the four tetrabenazine stereoisomers in determining their pharmacokinetics. SI-traceable characterisation of the first reference material for nanoparticle number concentration in suspension to support regulatory compliance. Predicting bone aging using spatially offset Raman spectroscopy: a longitudinal analysis on mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1