Development of a Detailed Finite Element Model of the BIPED MK2 and Verification of Fidelity in Two Cases of Blunt Impact.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2025-03-08 DOI:10.1007/s10439-024-03652-4
Robert Chauvet, Ashton Martin, Jennifer Rovt, Oren Petel, Simon Ouellet, Lindsey Westover, Christopher R Dennison
{"title":"Development of a Detailed Finite Element Model of the BIPED MK2 and Verification of Fidelity in Two Cases of Blunt Impact.","authors":"Robert Chauvet, Ashton Martin, Jennifer Rovt, Oren Petel, Simon Ouellet, Lindsey Westover, Christopher R Dennison","doi":"10.1007/s10439-024-03652-4","DOIUrl":null,"url":null,"abstract":"<p><p>Physical surrogates of the human head are commonly used to model cranial impacts, assess helmet efficacy and assess likelihood of head injuries. The Brain Injury Protection Evaluation Device (BIPED mk2) is a head form that contains a brain simulant, cerebrospinal fluid layer (CSF), connective membranes, a skull and a skin layer, and can be configured to measure kinematics, pressures and strains. In design efforts to increase the biofidelity of surrogates, finite element models play a significant role in assessing design iterations that better mimic the biological response of the head during impact. This study aims to create a digital model of the BIPED mk2 and provide a robust comparison to experimental pressure and strain data, measured from specific impact scenarios. Kinematics from two separate frontal impact experiment campaigns were used to drive the BIPED mk2 finite element model. In the first experiments, brain pressure was extracted from in situ transducers. In the second, brain strain was extracted from post hoc imagery analysis. These pressure and strain data are the basis on which we verify the pressures and strains reported from the finite element model. Pressure and displacement time series responses were compared with experimental data using a CORrelation Analysis (CORA). The average CORA rating for pressure measurements taken at the front brain sensor was 0.701 using the kinematic model inputs and 0.851 for the force model inputs. For the rear brain sensor, the signals were deemed poor fits as the average CORA scores were 0.442 for the kinematic input and 0.255 for the force input. CORA ratings for the comparison of displacement data in the x (anterior-posterior) and z (superior-inferior) directions of the 18 nodes tested resulted in a range of values from 0.012 to 0.936. The results matched best in the interior but were poor along the perimeter of the brain depending on the location of the point in relation to the brain surface. We speculate the mixed findings are due in large part to the simplified CSF model, a potential focus for future model refinement.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03652-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Physical surrogates of the human head are commonly used to model cranial impacts, assess helmet efficacy and assess likelihood of head injuries. The Brain Injury Protection Evaluation Device (BIPED mk2) is a head form that contains a brain simulant, cerebrospinal fluid layer (CSF), connective membranes, a skull and a skin layer, and can be configured to measure kinematics, pressures and strains. In design efforts to increase the biofidelity of surrogates, finite element models play a significant role in assessing design iterations that better mimic the biological response of the head during impact. This study aims to create a digital model of the BIPED mk2 and provide a robust comparison to experimental pressure and strain data, measured from specific impact scenarios. Kinematics from two separate frontal impact experiment campaigns were used to drive the BIPED mk2 finite element model. In the first experiments, brain pressure was extracted from in situ transducers. In the second, brain strain was extracted from post hoc imagery analysis. These pressure and strain data are the basis on which we verify the pressures and strains reported from the finite element model. Pressure and displacement time series responses were compared with experimental data using a CORrelation Analysis (CORA). The average CORA rating for pressure measurements taken at the front brain sensor was 0.701 using the kinematic model inputs and 0.851 for the force model inputs. For the rear brain sensor, the signals were deemed poor fits as the average CORA scores were 0.442 for the kinematic input and 0.255 for the force input. CORA ratings for the comparison of displacement data in the x (anterior-posterior) and z (superior-inferior) directions of the 18 nodes tested resulted in a range of values from 0.012 to 0.936. The results matched best in the interior but were poor along the perimeter of the brain depending on the location of the point in relation to the brain surface. We speculate the mixed findings are due in large part to the simplified CSF model, a potential focus for future model refinement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
Correction: Center of Pressure of Medial Knee Contact Force Predicts Future Transition Risk of Knee Surgery in Patients with Knee Osteoarthritis. A Look "Inside" the Sport of Wrestling: Examination of Head Acceleration Events and Mechanisms in Female High-School Wrestlers Using Instrumented Mouthguards. Development of a Detailed Finite Element Model of the BIPED MK2 and Verification of Fidelity in Two Cases of Blunt Impact. The Histological and Mechanical Behavior of Skin During Puncture for Different Impactor Sizes and Loading Rates. Chemical Characterization in Medical Device Evaluation: Current Practices, Regulatory Requirements, and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1