Identification of Alzheimer's disease brain networks based on EEG phase synchronization.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2025-03-09 DOI:10.1186/s12938-025-01361-0
Jiayi Cao, Bin Li, Xiaoou Li
{"title":"Identification of Alzheimer's disease brain networks based on EEG phase synchronization.","authors":"Jiayi Cao, Bin Li, Xiaoou Li","doi":"10.1186/s12938-025-01361-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Using the phase synchronization of EEG signals, two different phases, PLI and PLV, were used to construct brain network analysis and graph convolutional neural network, respectively, to achieve automatic identification of Alzheimer's disease (AD) and to assist in the early diagnosis of Alzheimer's disease.</p><p><strong>Methods: </strong>In this paper, we selected outpatients (16 AD subjects, 20 mild cognitive impairment (MCI) subjects and 21 healthy control (HC) subjects) from the outpatient clinic of Yangpu Mental Health Center in Shanghai, China, from January 2023 to December 2023, and collected resting-state EEG data. To collect resting-state EEG data, each patient was asked to sit down with eyes closed for 5 min. Firstly, the acquired EEG data were preprocessed to extract the data in the α-band at 8-13 Hz; secondly, the phase lag index (PLI) and phase-locked value (PLV) were used to construct the brain functional network, and the brain functional connectivity map was visualized by brain functional connectivity analysis. Finally, the constructed PLI and PLV were input into the graph convolutional neural network (GCN) model as node features for training and classification, respectively.</p><p><strong>Results: </strong>Healthy controls had relatively strong mean brain functional connectivity in the PLV brain network compared to AD and MCI patients. MCI patients showed lower mean brain functional connectivity in the brain network of PLI, while all three groups showed significant differences in brain functional connectivity between parietal and occipital lobes. The GCN model improved classification accuracy by more than 10% compared to using a machine learning classifier. When PLV was used as the nodal feature in the GCN model, the model achieved an average classification accuracy of 77.80% for the three groups of AD, MCI and HC, which was an improvement over the accuracy of choosing raw EEG data and PLI as the nodal feature. The performance of the model was further validated.</p><p><strong>Conclusions: </strong>The experimental results show that the GCN model can effectively identify the graph structure compared with the traditional machine learning model, the GCN-PLV model can better classify AD patients, and the alpha band is proved to be more suitable for AD resting-state EEG by tenfold cross-validation. The brain network map constructed based on PLI and PLV can further capture the local features of EEG signals and the intrinsic functional relationships between brain regions, and the combination of these two models has certain reference value for the diagnosis of AD patients.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"32"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01361-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Using the phase synchronization of EEG signals, two different phases, PLI and PLV, were used to construct brain network analysis and graph convolutional neural network, respectively, to achieve automatic identification of Alzheimer's disease (AD) and to assist in the early diagnosis of Alzheimer's disease.

Methods: In this paper, we selected outpatients (16 AD subjects, 20 mild cognitive impairment (MCI) subjects and 21 healthy control (HC) subjects) from the outpatient clinic of Yangpu Mental Health Center in Shanghai, China, from January 2023 to December 2023, and collected resting-state EEG data. To collect resting-state EEG data, each patient was asked to sit down with eyes closed for 5 min. Firstly, the acquired EEG data were preprocessed to extract the data in the α-band at 8-13 Hz; secondly, the phase lag index (PLI) and phase-locked value (PLV) were used to construct the brain functional network, and the brain functional connectivity map was visualized by brain functional connectivity analysis. Finally, the constructed PLI and PLV were input into the graph convolutional neural network (GCN) model as node features for training and classification, respectively.

Results: Healthy controls had relatively strong mean brain functional connectivity in the PLV brain network compared to AD and MCI patients. MCI patients showed lower mean brain functional connectivity in the brain network of PLI, while all three groups showed significant differences in brain functional connectivity between parietal and occipital lobes. The GCN model improved classification accuracy by more than 10% compared to using a machine learning classifier. When PLV was used as the nodal feature in the GCN model, the model achieved an average classification accuracy of 77.80% for the three groups of AD, MCI and HC, which was an improvement over the accuracy of choosing raw EEG data and PLI as the nodal feature. The performance of the model was further validated.

Conclusions: The experimental results show that the GCN model can effectively identify the graph structure compared with the traditional machine learning model, the GCN-PLV model can better classify AD patients, and the alpha band is proved to be more suitable for AD resting-state EEG by tenfold cross-validation. The brain network map constructed based on PLI and PLV can further capture the local features of EEG signals and the intrinsic functional relationships between brain regions, and the combination of these two models has certain reference value for the diagnosis of AD patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
Sex differences in electrical activity of the brain during sleep: a systematic review of electroencephalographic findings across the human lifespan. Identification of Alzheimer's disease brain networks based on EEG phase synchronization. Advancements in osteoblast sourcing, isolation, and characterization for dental tissue regeneration: a review. Integrative research on the mechanisms of acupuncture mechanics and interdisciplinary innovation. Correction: A glaucoma micro-stent with diverging channel and stepped shaft structure based on microfluidic template processing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1