Unlocking the Potential of EEG in Alzheimer's Disease Research: Current Status and Pathways to Precision Detection.

IF 3.5 3区 医学 Q2 NEUROSCIENCES Brain Research Bulletin Pub Date : 2025-03-07 DOI:10.1016/j.brainresbull.2025.111281
Frnaz Akbar, Imran Taj, Syed Muhammad Usman, Ali Shariq Imran, Shehzad Khalid, Imran Ihsan, Ammara Ali, Amanullah Yasin
{"title":"Unlocking the Potential of EEG in Alzheimer's Disease Research: Current Status and Pathways to Precision Detection.","authors":"Frnaz Akbar, Imran Taj, Syed Muhammad Usman, Ali Shariq Imran, Shehzad Khalid, Imran Ihsan, Ammara Ali, Amanullah Yasin","doi":"10.1016/j.brainresbull.2025.111281","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) affects millions of individuals worldwide and is considered a serious global health issue due to its gradual neuro-degenerative effects on cognitive abilities such as memory, thinking, and behavior. There is no cure for this disease but early detection along with a supportive care plan may aid in improving the quality of life for patients. Automated detection of AD is challenging because its symptoms vary in patients due to genetic, environmental, or other co-existing health conditions. In recent years, multiple researchers have proposed automated detection methods for AD using MRI and fMRI. These approaches are expensive, have poor temporal resolution, do not offer real-time insights, and have not proven to be very accurate. In contrast, only a limited number of studies have explored the potential of Electroencephalogram (EEG) signals for AD detection. In contrast, Electroencephalogram (EEG) signals present a cost-effective, non-invasive, and high-temporal-resolution alternative for AD detection. Despite their potential, the application of EEG signals in AD research remains under-explored. This study reviews publicly available EEG datasets, the variety of machine learning models developed for automated AD detection, and the performance metrics achieved by these methods. It provides a critical analysis of existing approaches, highlights challenges, and identifies key areas requiring further investigation. Key findings include a detailed evaluation of current methodologies, prevailing trends, and potential gaps in the field. What sets this work apart is its in-depth analysis of EEG signals for Alzheimer's Disease detection, providing a stronger and more reliable foundation for understanding the potential role of EEG in this area.</p>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":" ","pages":"111281"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainresbull.2025.111281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) affects millions of individuals worldwide and is considered a serious global health issue due to its gradual neuro-degenerative effects on cognitive abilities such as memory, thinking, and behavior. There is no cure for this disease but early detection along with a supportive care plan may aid in improving the quality of life for patients. Automated detection of AD is challenging because its symptoms vary in patients due to genetic, environmental, or other co-existing health conditions. In recent years, multiple researchers have proposed automated detection methods for AD using MRI and fMRI. These approaches are expensive, have poor temporal resolution, do not offer real-time insights, and have not proven to be very accurate. In contrast, only a limited number of studies have explored the potential of Electroencephalogram (EEG) signals for AD detection. In contrast, Electroencephalogram (EEG) signals present a cost-effective, non-invasive, and high-temporal-resolution alternative for AD detection. Despite their potential, the application of EEG signals in AD research remains under-explored. This study reviews publicly available EEG datasets, the variety of machine learning models developed for automated AD detection, and the performance metrics achieved by these methods. It provides a critical analysis of existing approaches, highlights challenges, and identifies key areas requiring further investigation. Key findings include a detailed evaluation of current methodologies, prevailing trends, and potential gaps in the field. What sets this work apart is its in-depth analysis of EEG signals for Alzheimer's Disease detection, providing a stronger and more reliable foundation for understanding the potential role of EEG in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
期刊最新文献
Classifying schizophrenia using functional MRI and investigating underlying functional phenomena MCDGLN: Masked Connection-based Dynamic Graph Learning Network for Autism Spectrum Disorder. Tectorigenin mitigates homocysteine-induced inflammation and ferroptosis in BV-2 microglial cells through promoting the SIRT1/SLC7A11 pathway. Unlocking the Potential of EEG in Alzheimer's Disease Research: Current Status and Pathways to Precision Detection. LDHA enhances brain injury and apoptosis after intracerebral hemorrhage by promoting P53 transcription through increasing P53 lactylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1