Machine learning uncovers the transcriptional regulatory network for the production host Streptomyces albidoflavus.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2025-03-25 Epub Date: 2025-03-08 DOI:10.1016/j.celrep.2025.115392
Mathias Jönsson, Renata Sigrist, Tetiana Gren, Mykhaylo Semenov Petrov, Nils Emil Junge Marcussen, Anna Svetlova, Pep Charusanti, Peter Gockel, Bernhard O Palsson, Lei Yang, Emre Özdemir
{"title":"Machine learning uncovers the transcriptional regulatory network for the production host Streptomyces albidoflavus.","authors":"Mathias Jönsson, Renata Sigrist, Tetiana Gren, Mykhaylo Semenov Petrov, Nils Emil Junge Marcussen, Anna Svetlova, Pep Charusanti, Peter Gockel, Bernhard O Palsson, Lei Yang, Emre Özdemir","doi":"10.1016/j.celrep.2025.115392","DOIUrl":null,"url":null,"abstract":"<p><p>Streptomyces albidoflavus is a widely used strain for natural product discovery and production through heterologous biosynthetic gene clusters (BGCs). However, the transcriptional regulatory network (TRN) and its impact on secondary metabolism remain poorly understood. Here, we characterize the TRN using independent component analysis on 218 RNA sequencing (RNA-seq) transcriptomes across 88 unique growth conditions. We identify 78 independently modulated sets of genes (iModulons) that quantitatively describe the TRN across diverse conditions. Our analyses reveal (1) TRN adaptation to different growth conditions, (2) conserved and unique characteristics of the TRN across diverse lineages, (3) transcriptional activation of several endogenous BGCs, including surugamide, minimycin, and paulomycin, and (4) inferred functions of 40% of uncharacterized genes in the S. albidoflavus genome. These findings provide a comprehensive and quantitative understanding of the S. albidoflavus TRN, offering a knowledge base for further exploration and experimental validation.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115392"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115392","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces albidoflavus is a widely used strain for natural product discovery and production through heterologous biosynthetic gene clusters (BGCs). However, the transcriptional regulatory network (TRN) and its impact on secondary metabolism remain poorly understood. Here, we characterize the TRN using independent component analysis on 218 RNA sequencing (RNA-seq) transcriptomes across 88 unique growth conditions. We identify 78 independently modulated sets of genes (iModulons) that quantitatively describe the TRN across diverse conditions. Our analyses reveal (1) TRN adaptation to different growth conditions, (2) conserved and unique characteristics of the TRN across diverse lineages, (3) transcriptional activation of several endogenous BGCs, including surugamide, minimycin, and paulomycin, and (4) inferred functions of 40% of uncharacterized genes in the S. albidoflavus genome. These findings provide a comprehensive and quantitative understanding of the S. albidoflavus TRN, offering a knowledge base for further exploration and experimental validation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis.
IF 2.4 4区 生物学Molecular BiotechnologyPub Date : 2024-07-01 DOI: 10.1007/s12033-023-00790-3
Wenjing Zhang, Chun Wei, Ling Wang
Identification of KEY lncRNAs and mRNAs Associated with Oral Squamous Cell Carcinoma Progression
IF 4 3区 生物学Current BioinformaticsPub Date : 2020-07-29 DOI: 10.2174/1573411016999200729125745
Yong Mi, Na Li, Qing Li, Yangu Shi, Congcong Zhang, Ju Li
Identification of key lncRNAs and mRNAs related intramuscular fat in pigs by WGCNA
IF 0 Research Square (Research Square)Pub Date : 2023-08-25 DOI: 10.21203/rs.3.rs-3268249/v1
Wenqiang Li, Suozhou Yang, Huixin Liu, Zhi Cao, Fei Xu, Chao Ning, Qin Zhang, Dan Wang, Hui Tang
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Oncogenic properties of wild-type DNA repair gene FANCA in breast cancer. Presynaptic recycling pool density regulates spontaneous synaptic vesicle exocytosis rate and is upregulated in the presence of β-amyloid. The balance between IFN-γ and ERK/MAPK signaling activities ensures lifelong maintenance of intestinal stem cells. Lung CD4+ resident memory T cells use airway secretory cells to stimulate and regulate onset of allergic airway neutrophilic disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1