Connectome architecture for gray matter atrophy and surgical outcomes in temporal lobe epilepsy.

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY Epilepsia Pub Date : 2025-03-08 DOI:10.1111/epi.18343
Qiuxing Lin, Danyang Cao, Wei Li, Yingying Zhang, Yuming Li, Peiwen Liu, Xiang Huang, Kailing Huang, Qiyong Gong, Dong Zhou, Dongmei An
{"title":"Connectome architecture for gray matter atrophy and surgical outcomes in temporal lobe epilepsy.","authors":"Qiuxing Lin, Danyang Cao, Wei Li, Yingying Zhang, Yuming Li, Peiwen Liu, Xiang Huang, Kailing Huang, Qiyong Gong, Dong Zhou, Dongmei An","doi":"10.1111/epi.18343","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Temporal lobe epilepsy (TLE) has been recognized as a network disorder with widespread gray matter atrophy. However, the role of connectome architecture in shaping morphological alterations and identifying atrophy epicenters remains unclear. Furthermore, individualized modeling of atrophy epicenters and their potential clinical applications have not been well established. This study aims to explore how gray matter atrophy correlates with normal connectome architecture, identify potential atrophy epicenters, and employ individualized modeling approach to evaluate the impact of different epicenter patterns on surgical outcomes in patients with TLE.</p><p><strong>Methods: </strong>This study utilized anatomic MRI data from 126 refractory TLE patients who underwent anterior temporal lobectomy and 60 healthy controls (HCs), along with normative functional and structural connectome data, to investigate the relationship between gray matter volume (GMV) changes and functional or structural connectivity. Two models were employed to identify atrophy epicenters: a data-driven approach evaluating nodal and neighbor atrophy rankings, and a network diffusion model (NDM) simulating the spread of pathology from different seed regions. K-means clustering was applied in patient-tailored modeling to uncover distinct epicenter subtypes.</p><p><strong>Results: </strong>Our findings indicate that the pattern of gray matter atrophy in TLE is constrained primarily by structural connectivity rather than by functional connectivity. Using the structural connectome, we pinpointed the hippocampus and adjacent temporo-limbic regions as key atrophy epicenters. The patient-tailored modeling revealed significant variability in epicenter distribution, allowing us to categorize them into two distinct subtypes. Notably, patients in subtype 2, with epicenters localized to the ipsilateral temporal pole and medial temporal lobe, exhibited significantly higher seizure-free rates compared to patients in subtype 1, whose epicenters situated in frontocentral regions.</p><p><strong>Significance: </strong>These findings highlight the central role of structural connectivity in shaping TLE-related morphological changes. Individualized epicenter modeling may enhance surgical decisions and improve prognostic stratification in TLE management.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18343","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Temporal lobe epilepsy (TLE) has been recognized as a network disorder with widespread gray matter atrophy. However, the role of connectome architecture in shaping morphological alterations and identifying atrophy epicenters remains unclear. Furthermore, individualized modeling of atrophy epicenters and their potential clinical applications have not been well established. This study aims to explore how gray matter atrophy correlates with normal connectome architecture, identify potential atrophy epicenters, and employ individualized modeling approach to evaluate the impact of different epicenter patterns on surgical outcomes in patients with TLE.

Methods: This study utilized anatomic MRI data from 126 refractory TLE patients who underwent anterior temporal lobectomy and 60 healthy controls (HCs), along with normative functional and structural connectome data, to investigate the relationship between gray matter volume (GMV) changes and functional or structural connectivity. Two models were employed to identify atrophy epicenters: a data-driven approach evaluating nodal and neighbor atrophy rankings, and a network diffusion model (NDM) simulating the spread of pathology from different seed regions. K-means clustering was applied in patient-tailored modeling to uncover distinct epicenter subtypes.

Results: Our findings indicate that the pattern of gray matter atrophy in TLE is constrained primarily by structural connectivity rather than by functional connectivity. Using the structural connectome, we pinpointed the hippocampus and adjacent temporo-limbic regions as key atrophy epicenters. The patient-tailored modeling revealed significant variability in epicenter distribution, allowing us to categorize them into two distinct subtypes. Notably, patients in subtype 2, with epicenters localized to the ipsilateral temporal pole and medial temporal lobe, exhibited significantly higher seizure-free rates compared to patients in subtype 1, whose epicenters situated in frontocentral regions.

Significance: These findings highlight the central role of structural connectivity in shaping TLE-related morphological changes. Individualized epicenter modeling may enhance surgical decisions and improve prognostic stratification in TLE management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
期刊最新文献
De novo TANC2 variants caused developmental and epileptic encephalopathy and epilepsy. Toward molecular phenotyping of temporal lobe epilepsy by spatial omics. Symptom network analysis of prefrontal seizures. Validation of a discrete electrographic seizure detection algorithm for extended-duration, reduced-channel wearable EEG. Brain perfusion imaging by arterial spin labeling predicts postsurgical seizure freedom in pediatric focal lesional epilepsy: A pilot study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1