Guangpu Zhao, Xinyu Su, Aonan Wen, Yiming Li, Yong Wang, Yijiao Zhao, Danqing He, Yan Gu
{"title":"Spatially-dense three-dimensional analysis of the midfacial skeletal shape asymmetry in skeletal Class III patients.","authors":"Guangpu Zhao, Xinyu Su, Aonan Wen, Yiming Li, Yong Wang, Yijiao Zhao, Danqing He, Yan Gu","doi":"10.1093/ejo/cjaf010","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to analyze midfacial skeletal shape asymmetry in skeletal Class III patients using a three-dimensional spatially-dense method.</p><p><strong>Methods: </strong>Sixty skeletal Class III patients' cone-beam computed tomography images were retrospectively enrolled and divided into three groups according to occlusal plane inclination (OPI) and mandibular lateral deviation (MD). A spatially-dense template of the anterior outer surface of the midfacial skeleton was established and validated. Through template registration, a large number of homologous quasi-landmarks of the midfacial skeleton were automatically identified. After robust superimposition of the original and mirror images, the root-mean-square error was calculated as the asymmetry index (AI). Color-coded maps were generated to visually display the location and magnitude of the asymmetry.</p><p><strong>Results: </strong>The median overall midfacial skeletal AIs of group 1 (with OPI and MD), group 2 (with MD without OPI), and group 3 (without OPI or MD) were 1.55, 1.27, and 1.19, respectively. The overall AI of group 1 was significantly higher than that of group 2 (P < .05) and group 3 (P < .01). Within group 1, the AI of the alveolar process was significantly higher than that of other regions.</p><p><strong>Conclusions: </strong>The three-dimensional spatially-dense method allows quantitative and visual analysis of shape asymmetry of the midfacial skeleton. Skeletal Class III patients with occlusal plane inclination and mandibular lateral deviation exhibit a significantly greater degree of midfacial skeletal asymmetry, with the alveolar process identified as the main asymmetric site of their midfacial skeleton.</p>","PeriodicalId":11989,"journal":{"name":"European journal of orthodontics","volume":"47 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ejo/cjaf010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study aimed to analyze midfacial skeletal shape asymmetry in skeletal Class III patients using a three-dimensional spatially-dense method.
Methods: Sixty skeletal Class III patients' cone-beam computed tomography images were retrospectively enrolled and divided into three groups according to occlusal plane inclination (OPI) and mandibular lateral deviation (MD). A spatially-dense template of the anterior outer surface of the midfacial skeleton was established and validated. Through template registration, a large number of homologous quasi-landmarks of the midfacial skeleton were automatically identified. After robust superimposition of the original and mirror images, the root-mean-square error was calculated as the asymmetry index (AI). Color-coded maps were generated to visually display the location and magnitude of the asymmetry.
Results: The median overall midfacial skeletal AIs of group 1 (with OPI and MD), group 2 (with MD without OPI), and group 3 (without OPI or MD) were 1.55, 1.27, and 1.19, respectively. The overall AI of group 1 was significantly higher than that of group 2 (P < .05) and group 3 (P < .01). Within group 1, the AI of the alveolar process was significantly higher than that of other regions.
Conclusions: The three-dimensional spatially-dense method allows quantitative and visual analysis of shape asymmetry of the midfacial skeleton. Skeletal Class III patients with occlusal plane inclination and mandibular lateral deviation exhibit a significantly greater degree of midfacial skeletal asymmetry, with the alveolar process identified as the main asymmetric site of their midfacial skeleton.
期刊介绍:
The European Journal of Orthodontics publishes papers of excellence on all aspects of orthodontics including craniofacial development and growth. The emphasis of the journal is on full research papers. Succinct and carefully prepared papers are favoured in terms of impact as well as readability.