The effects of urine alkalinization on kidney function in critically ill patients with COVID-19: a proof-of-concept randomized clinical trial.

IF 2.8 Q2 CRITICAL CARE MEDICINE Intensive Care Medicine Experimental Pub Date : 2025-03-07 DOI:10.1186/s40635-025-00739-7
Nuttha Lumlertgul, John A Kellum, Jonah Powell-Tuck, Moncy Mathew, Sunita Sardiwal, Marlies Ostermann
{"title":"The effects of urine alkalinization on kidney function in critically ill patients with COVID-19: a proof-of-concept randomized clinical trial.","authors":"Nuttha Lumlertgul, John A Kellum, Jonah Powell-Tuck, Moncy Mathew, Sunita Sardiwal, Marlies Ostermann","doi":"10.1186/s40635-025-00739-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) is a common complication of COVID-19. While the exact mechanisms remain unclear, direct viral infection of renal tubular epithelial cells is hypothesized. Given the pH-dependent entry of coronaviruses into host cells, urine alkalinization was proposed as a potential preventive strategy.</p><p><strong>Methods: </strong>This was a proof-of-concept prospective, randomized clinical trial in critically ill patients with COVID-19. Patients were randomized to urine alkalinization versus usual care. The intervention group received intravenous 8.4% sodium bicarbonate to achieve a urine pH ≥ 7.5 up to 10 days after randomization. The primary outcome was the proportion of patients achieving target urine pH. Secondary outcomes included changes in urine tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), AKI development, renal replacement therapy, and adverse effects.</p><p><strong>Results: </strong>The trial was terminated early due to slow recruitment and the end of the COVID-19 pandemic. Sixteen patients were enrolled (median age 48 years old, 75% male). More patients in the intervention group achieved target urine pH than in the control group (75% vs 37.5%, P = 0.315). There was a separation of urine pH between both groups throughout 10 days (P = 0.097 for interaction). However, the intervention did not significantly impact urine [TIMP-2]x[IGFBP7] concentrations (P = 0.813 for interaction) or clinical outcomes, including AKI occurrence (risk ratio 0.6 (95% confidence interval 0.21, 1.70), P = 0.619). More patients in the intervention group experienced hypernatremia and metabolic alkalosis. Notably, patients with elevated urine [TIMP-2]x[IGFBP7] concentrations and AKI had higher ICU and 60-day mortality.</p><p><strong>Conclusions: </strong>While urine alkalinization is feasible and can increase urine pH, we could not demonstrate differences in AKI rates or changes in urine [TIMP-2]x[IGFBP7] concentrations in critically ill COVID-19 patients.</p>","PeriodicalId":13750,"journal":{"name":"Intensive Care Medicine Experimental","volume":"13 1","pages":"33"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intensive Care Medicine Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40635-025-00739-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute kidney injury (AKI) is a common complication of COVID-19. While the exact mechanisms remain unclear, direct viral infection of renal tubular epithelial cells is hypothesized. Given the pH-dependent entry of coronaviruses into host cells, urine alkalinization was proposed as a potential preventive strategy.

Methods: This was a proof-of-concept prospective, randomized clinical trial in critically ill patients with COVID-19. Patients were randomized to urine alkalinization versus usual care. The intervention group received intravenous 8.4% sodium bicarbonate to achieve a urine pH ≥ 7.5 up to 10 days after randomization. The primary outcome was the proportion of patients achieving target urine pH. Secondary outcomes included changes in urine tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), AKI development, renal replacement therapy, and adverse effects.

Results: The trial was terminated early due to slow recruitment and the end of the COVID-19 pandemic. Sixteen patients were enrolled (median age 48 years old, 75% male). More patients in the intervention group achieved target urine pH than in the control group (75% vs 37.5%, P = 0.315). There was a separation of urine pH between both groups throughout 10 days (P = 0.097 for interaction). However, the intervention did not significantly impact urine [TIMP-2]x[IGFBP7] concentrations (P = 0.813 for interaction) or clinical outcomes, including AKI occurrence (risk ratio 0.6 (95% confidence interval 0.21, 1.70), P = 0.619). More patients in the intervention group experienced hypernatremia and metabolic alkalosis. Notably, patients with elevated urine [TIMP-2]x[IGFBP7] concentrations and AKI had higher ICU and 60-day mortality.

Conclusions: While urine alkalinization is feasible and can increase urine pH, we could not demonstrate differences in AKI rates or changes in urine [TIMP-2]x[IGFBP7] concentrations in critically ill COVID-19 patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intensive Care Medicine Experimental
Intensive Care Medicine Experimental CRITICAL CARE MEDICINE-
CiteScore
5.10
自引率
2.90%
发文量
48
审稿时长
13 weeks
期刊最新文献
Expiratory ventilation assistance versus pressure-controlled ventilation with ambient oxygen in a hemorrhagic trauma model: a prehospital rescue option? Validation of the capnodynamic method to calculate mixed venous oxygen saturation in postoperative cardiac patients. The effects of urine alkalinization on kidney function in critically ill patients with COVID-19: a proof-of-concept randomized clinical trial. Correction: Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis. Machine learning-based identification of efficient and restrictive physiological subphenotypes in acute respiratory distress syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1