Tian-Gen Chang, Seongyong Park, Alejandro A Schäffer, Peng Jiang, Eytan Ruppin
{"title":"Hallmarks of artificial intelligence contributions to precision oncology.","authors":"Tian-Gen Chang, Seongyong Park, Alejandro A Schäffer, Peng Jiang, Eytan Ruppin","doi":"10.1038/s43018-025-00917-2","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into oncology promises to revolutionize cancer care. In this Review, we discuss ten AI hallmarks in precision oncology, organized into three groups: (1) cancer prevention and diagnosis, encompassing cancer screening, detection and profiling; (2) optimizing current treatments, including patient outcome prediction, treatment planning and monitoring, clinical trial design and matching, and developing response biomarkers; and (3) advancing new treatments by identifying treatment combinations, discovering cancer vulnerabilities and designing drugs. We also survey AI applications in interventional clinical trials and address key challenges to broader clinical adoption of AI: data quality and quantity, model accuracy, clinical relevance and patient benefit, proposing actionable solutions for each.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00917-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) into oncology promises to revolutionize cancer care. In this Review, we discuss ten AI hallmarks in precision oncology, organized into three groups: (1) cancer prevention and diagnosis, encompassing cancer screening, detection and profiling; (2) optimizing current treatments, including patient outcome prediction, treatment planning and monitoring, clinical trial design and matching, and developing response biomarkers; and (3) advancing new treatments by identifying treatment combinations, discovering cancer vulnerabilities and designing drugs. We also survey AI applications in interventional clinical trials and address key challenges to broader clinical adoption of AI: data quality and quantity, model accuracy, clinical relevance and patient benefit, proposing actionable solutions for each.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.