Vania Gabriela Sedano Partida, Henrique Moura Dias, Maria Teresa Portes, Marie-Anne Van Sluys
{"title":"The genetic puzzle of multicopy genes: challenges and troubleshooting.","authors":"Vania Gabriela Sedano Partida, Henrique Moura Dias, Maria Teresa Portes, Marie-Anne Van Sluys","doi":"10.1186/s13007-025-01329-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Studies of multicopy genes impose challenges related to gene redundancy and sequence similarity among copies. However, recent advances in molecular biology and genomics tools associated with dedicated databases facilitate their study. Thus, the present work emphasizes the need for rigorous methodologies and standardized approaches to interpret RT-qPCR results accurately.</p><p><strong>Results: </strong>Data from Physcomitrium patens provides a comprehensive five-step protocol, using thiamine thiazole synthase (THI1) and sucrose 6-phosphate phosphohydrolase (S6PP) genes as proof of concept to showcase a systematic workflow for studying multicopy genes. Beyond examining genes of interest, we highlight the critical role of choosing appropriate internal controls in the analytical process for interpreting gene expression patterns accurately. We emphasize the importance of identifying the relevant orthologous gene, recognizing the inherent challenges in determining the most functional copy for subsequent studies. Our objective is to enhance comprehension of gene redundancy by dissecting multicopy genes' genomic landscape and its characteristics. Furthermore, we address the decision-making process surrounding the expression level quantification of multicopy genes.</p><p><strong>Conclusions: </strong>The study of multicopy genes discloses early events for functional adaptation. Here, we discuss the significance of multicopy genes in plant biology and provide an experimental protocol to analyze them. As plant systems are strongly influenced by light/dark cycles, challenges inherent to circadian processes are also acknowledged. Therefore, our comprehensive approach aims to advance the understanding of multicopy gene dynamics, offering practical methodologies and contributing with valuable insights to the scientific community.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"32"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01329-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Studies of multicopy genes impose challenges related to gene redundancy and sequence similarity among copies. However, recent advances in molecular biology and genomics tools associated with dedicated databases facilitate their study. Thus, the present work emphasizes the need for rigorous methodologies and standardized approaches to interpret RT-qPCR results accurately.
Results: Data from Physcomitrium patens provides a comprehensive five-step protocol, using thiamine thiazole synthase (THI1) and sucrose 6-phosphate phosphohydrolase (S6PP) genes as proof of concept to showcase a systematic workflow for studying multicopy genes. Beyond examining genes of interest, we highlight the critical role of choosing appropriate internal controls in the analytical process for interpreting gene expression patterns accurately. We emphasize the importance of identifying the relevant orthologous gene, recognizing the inherent challenges in determining the most functional copy for subsequent studies. Our objective is to enhance comprehension of gene redundancy by dissecting multicopy genes' genomic landscape and its characteristics. Furthermore, we address the decision-making process surrounding the expression level quantification of multicopy genes.
Conclusions: The study of multicopy genes discloses early events for functional adaptation. Here, we discuss the significance of multicopy genes in plant biology and provide an experimental protocol to analyze them. As plant systems are strongly influenced by light/dark cycles, challenges inherent to circadian processes are also acknowledged. Therefore, our comprehensive approach aims to advance the understanding of multicopy gene dynamics, offering practical methodologies and contributing with valuable insights to the scientific community.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.