{"title":"Prediction of tumor spread through air spaces with an automatic segmentation deep learning model in peripheral stage I lung adenocarcinoma.","authors":"Cong Liu, Yu-Feng Wang, Ping Gong, Xiu-Qing Xue, Hong-Ying Zhao, Hui Qian, Chao Jia, Xiao-Feng Li","doi":"10.1186/s12931-025-03174-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To evaluate the clinical applicability of deep learning (DL) models based on automatic segmentation in preoperatively predicting tumor spread through air spaces (STAS) in peripheral stage I lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>This retrospective study analyzed data from patients who underwent surgical treatment for lung tumors from January 2022 to December 2023. An external validation set was introduced to assess the model's generalizability. The study utilized conventional radiomic features and DL models for comparison. ROI segmentation was performed using the VNet architecture, and DL models were developed with transfer learning and optimization techniques. We assessed the diagnostic accuracy of our models via calibration curves, decision curve analysis, and ROC curves.</p><p><strong>Results: </strong>The DL model based on automatic segmentation achieved an AUC of 0.880 (95% CI 0.780-0.979), outperforming the conventional radiomics model with an AUC of 0.833 (95% CI 0.707-0.960). The DL model demonstrated superior performance in both internal validation and external testing cohorts. Calibration curves, decision curve analysis, and ROC curves confirmed the enhanced diagnostic accuracy and clinical utility of the DL approach.</p><p><strong>Conclusion: </strong>The DL model based on automatic segmentation technology shows significant promise in preoperatively predicting STAS in peripheral stage I LUAD, surpassing traditional radiomics models in diagnostic accuracy and clinical applicability. Clinical trial number The clinical trial was registered on April 22, 2024, with the registration number researchregistry10213 ( www.researchregistry.com ).</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"94"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03174-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To evaluate the clinical applicability of deep learning (DL) models based on automatic segmentation in preoperatively predicting tumor spread through air spaces (STAS) in peripheral stage I lung adenocarcinoma (LUAD).
Methods: This retrospective study analyzed data from patients who underwent surgical treatment for lung tumors from January 2022 to December 2023. An external validation set was introduced to assess the model's generalizability. The study utilized conventional radiomic features and DL models for comparison. ROI segmentation was performed using the VNet architecture, and DL models were developed with transfer learning and optimization techniques. We assessed the diagnostic accuracy of our models via calibration curves, decision curve analysis, and ROC curves.
Results: The DL model based on automatic segmentation achieved an AUC of 0.880 (95% CI 0.780-0.979), outperforming the conventional radiomics model with an AUC of 0.833 (95% CI 0.707-0.960). The DL model demonstrated superior performance in both internal validation and external testing cohorts. Calibration curves, decision curve analysis, and ROC curves confirmed the enhanced diagnostic accuracy and clinical utility of the DL approach.
Conclusion: The DL model based on automatic segmentation technology shows significant promise in preoperatively predicting STAS in peripheral stage I LUAD, surpassing traditional radiomics models in diagnostic accuracy and clinical applicability. Clinical trial number The clinical trial was registered on April 22, 2024, with the registration number researchregistry10213 ( www.researchregistry.com ).
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.